ปราสาทสิริวิทยาของการณับลำปีสสาวะ
และการกลับเป็นสาวะไม่อยู่

ราตรี สุคตะวัง*
ปัณธุ ชมกลาง*


The neurophysiology of micturition is presented in 3 sections: 1) The innervation of the bladder, urethra and pelvic floor with reference to the basic storage-voiding mechanism; 2) The neurophysiology of the basic storage-voiding mechanism; and 3) Brain control. The neural circuits of voiding reflexes and urinary incontinence are also discussed.

Reprint request: Sudsuang R, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10500, Thailand.

Received for publication. May 4, 1988.

*ฮัททิพหะวิชัย ละแม่พยัทธ์* จุฬาลงกรณ์มหาวิทยาลัย
ระบบประสาทที่มีเหนือกระเพาะปัสสาวะ ที่อ ปัสสาวะ และพูเดนต์

ระบบประสาทที่มีเหนือประกอบเป็น 2 ระบบ คือ
ระบบประสาทอ่อนโยนที่ได้แก่ ซิกมาส์และพูเดนต์
ซิกมาส์และระบบประสาทร่างกาย (somatic) ซึ่งนั้น
วางจากระบบประสาทจึงค่อนข้างซับซ้อน (รูปที่ 1)

![Figure 1](image-url)

A concept of the innervation of the bladder and sphincter-active urethra. Key: D, detrusor; T, trigone; PSM, proximal sphincter mechanism; BN, bladder neck; DSM, distal sphincter mechanism; USM, urethral smooth muscle; IR, intrinsic rhabdosphincter; PUM, periurethral musculature; SN, sympathetic nerves; PSN, parasympathetic nerves; PN, pelvic nerves; PP, pelvic plexus; SIF, small intensely fluorescent cell; Pud N, pudendal nerve.

ประสาท preganglionic ของกระชิมเพลาคลี มี
จุดเริ่มต้นจากในส่วนหลังกระดับ sacrum 3 และ 4 ที่ไปยัง
pelvic plexuses ทางส่วนประสาท pelvic หรือ splanchnic
จาก ganglia ซึ่งมักจะอยู่ที่เยื่อบุกระเพาะปัสสาวะ หรือใน
ผนังของกระเพาะปัสสาวะจะทำให้ประสาท postganglionic
ไปยังกล้ามเนื้อดetrusor ที่มุ่งกระเพาะปัสสาวะ โดย
มีสารสื่อประสาทที่หล่อเลี้ยงคือ acetylcholine

ประสาทชิมเพลาคลีมีจุดเริ่มต้นที่ในส่วนหลังกระดับ
thoracic 10 ถึง lumbar 2 ที่ไปตามส่วนประสาท hypothalamic เช่น synapse ที่ ganglia แล้วไป postganglionic
ชี้ปลายประสาทหลัง noradrenaline เป็นสารสื่อประสาท
อย่างที่ถูกปกปิด pelvic plexuses เข้าสู่กล้ามเนื้อดetrusor
ของกระเพาะปัสสาวะ

ประสาทที่อยู่ในส่วนในของ intrinsic rhabdosphincter
ซึ่งสัญญียอนุสรณ์เชื่อมกับส่วนหลังกระดับ pudendal
ที่คลื่นผ่านผ่านช่อง sacrum 2-4 เข้าสู่ประสาทหลอด

การย้อมปัสสาวะในคนหรือสัตว์ก่อนเข้าสู่กล้ามเนื้อ
เมื่อต้องการจะย้อมกระเพาะจะมีทุกๆมาที่จะย้อมสัณห์หรือสัณห์ไล่โล
ขณะผ่านจะมีการย้อมกระจายในสัณห์เดิมหนึ่ง นอก
จากนี้ยังมีปัจจัยส่วนต่างๆและพืชIIDหนึ่งกันด้วย เช่น
สุนัขจะย้อมปัสสาวะวิธีหนึ่ง ๆ เธอจะกระทำทางที่จะ
ใช้ได้ประมาณและไม่หลุดทาง สัตว์ป่าจะย้อมกระเพาะ
ได้มาก ๆ บางชนิดก็ไม่ได้เลย หรือบางชนิดจะย้อมที่
กระเพาะปัสสาวะเดิม การจะเก็บปัสสาวะในกระเพาะ
ปัสสาวะได้มากหรือน้อย และการย้อมปัสสาวะ ประสาท
ด้วยกลไกพื้นฐานนี้มีอิทธิพลต่อกระเพาะและรูปแบบอย่าง

Figure 1 A concept of the innervation of the bladder and sphincter-active urethra. Key: D, detrusor; T, trigone; PSM, proximal sphincter mechanism; BN, bladder neck; DSM, distal sphincter mechanism; USM, urethral smooth muscle; IR, intrinsic rhabdosphincter; PUM, periurethral musculature; SN, sympathetic nerves; PSN, parasympathetic nerves; PN, pelvic nerves; PP, pelvic plexus; SIF, small intensely fluorescent cell; Pud N, pudendal nerve.

ประสาท preganglionic ของกระชิมเพลาคลี มี
จุดเริ่มต้นจากในส่วนหลังกระดับ sacrum 3 และ 4 ที่ไปยัง
pelvic plexuses ทางส่วนประสาท pelvic หรือ splanchnic
จาก ganglia ซึ่งมักจะอยู่ที่เยื่อบุกระเพาะปัสสาวะ หรือใน
ผนังของกระเพาะปัสสาวะจะทำให้ประสาท postganglionic
ไปยังกล้ามเนื้อดetrusor ที่มุ่งกระเพาะปัสสาวะ โดย
มีสารสื่อประสาทที่หล่อเลี้ยงคือ acetylcholine

ประสาทชิมเพลาคลีมีจุดเริ่มต้นที่ในส่วนหลังกระดับ
thoracic 10 ถึง lumbar 2 ที่ไปตามส่วนประสาท hypothalamic เช่น synapse ที่ ganglia แล้วไป postganglionic
ชี้ปลายประสาทหลัง noradrenaline เป็นสารสื่อประสาท
อย่างที่ถูกปกปิด pelvic plexuses เข้าสู่กล้ามเนื้อดetrusor
ของกระเพาะปัสสาวะ

ประสาทที่อยู่ในส่วนในของ intrinsic rhabdosphincter
ซึ่งสัญญียอนุสรณ์เชื่อมกับส่วนหลังกระดับ pudendal
ที่คลื่นผ่านผ่านช่อง sacrum 2-4 เข้าสู่ประสาทหลอด

การย้อมปัสสาวะในคนหรือสัตว์ก่อนเข้าสู่กล้ามเนื้อ
เมื่อต้องการจะย้อมกระเพาะจะมีทุกๆมาที่จะย้อมสัณห์หรือสัณห์ไล่โล
ขณะผ่านจะมีการย้อมกระจายในสัณห์เดิมหนึ่ง นอก
จากนี้ยังมีปัจจัยส่วนต่างๆและพืชIIDหนึ่งกันด้วย เช่น
สุนัขจะย้อมปัสสาวะวิธีหนึ่ง ๆ เธอจะกระทำทางที่จะ
ใช้ได้ประมาณและไม่หลุดทาง สัตว์ป่าจะย้อมกระเพาะ
ได้มาก ๆ บางชนิดก็ไม่ได้เลย หรือบางชนิดจะย้อมที่
กระเพาะปัสสาวะเดิม การจะเก็บปัสสาวะในกระเพาะ
ปัสสาวะได้มากหรือน้อย และการย้อมปัสสาวะ ประสาท
ด้วยกลไกพื้นฐานนี้มีอิทธิพลต่อกระเพาะและรูปแบบอย่าง

ระบบประสาทที่มีเหนือกระเพาะปัสสาวะ ที่อ ปัสสาวะ และพูเดนต์

ระบบประสาทที่มีเหนือประกอบเป็น 2 ระบบ คือ
ระบบประสาทอ่อนโยนที่ได้แก่ ซิกมาส์และพูเดนต์
ซิกมาส์และระบบประสาทร่างกาย (somatic) ซึ่งนั้น
วางจากระบบประสาทจึงค่อนข้างซับซ้อน (รูปที่ 1)
แตกต่างจาก typical α-motoneurons ที่มีต้านแหล่งสัน
ก้านเนื้อแตกต่างไม่ใหญ่ในส่วนหลัง และยังพบว่าเซลล์กล้าเนื้
แสดงใน intrinsic rhabdosphincter ที่ถูกใช้โดยประสา
เหตุนี้มีความแตกต่างจากเซลล์กล้าเนื้อหลาย ๆ ใน[2]

ประสาทสะเทยที่ไม่เลือกกล้าเนื้อของพืชเสี่ยงรัง
ประกอบด้วย typical α-motoneurons พบที่ไม่เลือกส่วน
บนของพืชเสี่ยงรังออกจาก anterior primary rami ของ
sacrum 3 และ 4 หรือบางครั้งอาจมี sacrum 5 ร่วมด้วย
ส่วนที่ไม่เลือกสมอง perineum ของพืชเสี่ยงรังมาจาก
แนวของประสาท pudendal และประสาท perineal ซึ่ง
ออกจาก sacrum 2,[3]

ระยะระยะระหว่างประเทศและกล้าเนื้อเรื่องของ
ประสาทปัสสาวะและท้อปิสตาแตกต่างกับกล้าเนื้อ
ระยะระยะของประสาทอันเดอร์โคด์เป็นแบบที่
เรียกว่า varicosities[4] คือมียีดและคลายลูกลับ มีสารสื่อ
ประสาทระบุย่อยใน vesicles หลังจากที่พบว่าการตรวจสอบ
การทำงานของประสาทชีวเคมีเจ็ดไม่มีมันยีดตัวก่อน
หลังกล้าเนื้อนี้ detrusor ให้สัญญาณ[5] ซึ่งมีการสื่อสาร
สื่อสารสู่ประสาทต่าง ๆ ที่ไม่ใช่ acetylcholine และ
noradrenaline และพบว่ามีสารสื่อประสาทหลายชนิดคือ
ผลจากการยีดของกล้าเนื้อดิบ detrusor เช่น ATP, serotonin,
dopamine, GABA, prostaglandins, VIP (vasoactive
intestinal polypeptides) และ substance P[5,6,7] เช่นไร
ATP มีบทบาทสำคัญ[4] แต่ยังไม่ได้ทบทวนในกล้าเนื้
ปัสสาวะเจ็ด acetylcholine เป็นตัวสัญญาณที่ให้กล้า
เนื้อดิบ detrusor [8] ส่วนสื่อสู่ประสาทต่าง ๆ ที่คลาร
มันนั้นช่วยในการควบคุม (modify) การตอบสนองของกล้า
เนื้อดิบ detrusor acetylcholine อีกหนึ่ง

กระเพาะปัสสาวะและท้อปิสต้าระหว่างเก็บ
ประสาทส่วนใหญ่จากชีวเคมีเจ็ดและส่วนน้อยจาก
ชีวเคมีเจ็ด สำหรับในพืชเคมีเจ็ดประสาทชีวเคมีเจ็ดไป
เลือกมันยีดกล้าเนื้อ preprostatic region ซึ่งมีไม่
ในเพศผู้ชาย ดังนั้นจึงเรื่องในกระเพาะประสาทชีวเคมีเจ็ด
มีมันยีดก่อนที่จะมีการต้องการกระชากกล้าเนื้อ ทางกล้านี้
เนื่องจากที่ ganglia ของชีวเคมีเจ็ดและชีวเคมีเจ็ด
มีการคิดในแนวที่อินแอมเพลซิดนิส[9] นอกจากนี้ de
Groot ชี้ว่า α-receptor noradrenaline ที่ ganglia เป็น
α-receptor หมายถึง β-receptor ที่ ganglia ที่
follow พบว่ามันยีดของ noradrenaline ที่ ganglia ทำ
ให้เกิดการชักกล้าเนื้อของกระชากประสาทชีวเคมีเจ

เกิดบริวาร ganglia ซึ่งซ่อมในการควบคุมการชักกล้าเนื้อ
โดยทางอ้อม

ประสาทนาเข้า (afferent nerves) จากกระเพาะ
ปัสสาวะและท้อปิสต้าแตกต่างกับระบบประสา
ทชีวเคมีเจ็ด ชีวเคมีเจ็ด และประสาทกังขา สำหรับ
ประสาทนาเข้าที่สำคัญที่ควบคุมการชักกล้าเนื้อ คือ ที่
มาจาก tension receptor ของกล้าเนื้อเรื่องมันยีดประสาท
ชีวเคมีเจ็ด มีลูกลับหรือกระชากกล้าเนื้อที่นั้นมันยีดในส่วนหลัง
กระชาก sacrum จะให้สารสื่อประสาทกล้าเนื้อเป็น VIP และ
ส่วนน้อยเป็น substance P นอกจากนี้ยังพบ enkephalin
ซึ่งเป็นสารสื่อที่ยีดกล้าเนื้อ (inhibitory transmitter)
ด้วย[12,13,14]

อีกส่วนที่เป็นประสาทนาเข้าจะขา synaptic ในส่วน
หลังก้านของประสาท preganglionic ของระบบอยู่ใกล
ผม แต่แพร่พันธุ์ย่อยจากที่สำคัญที่ควบคุมยีดใน
ใน rostral pons ที่เรียกว่า locus coeruleus ทำฤ
สภาพของระบบประสาทกลางเห็นได้ว่าจะไม่ได้ทำให้เกิด
การเปลี่ยนแปลงทางประสาทสรีรวิทยาที่สำคัญที่เกี่ยวกับ
การควบคุมกล้าเนื้อนี้ detrusor ในการยีดปัสสาวะ แต่อาจ
พบความผิดปกติทางด้าน urodynamics บ้าง แต่ยังไม่
พบว่าได้กระชากระดับนี้ จะพบความผิดปกติทางประสาท
การทำงานของกล้าเนื้อดิบ detrusor และกล้าเนื้อ sphincter

จากการศึกษาในสัตว์ของพบว่ามันยีดประสาทใน
pons ที่เกี่ยวข้องกับการควบคุมกล้าเนื้อดิบ detrusor มี
acetylcholine และ dopamine เป็นสารสื่อประสาทในการ
กระชากช่วงการทำงาน และเป็น GABA เป็นสารสื่อประสาทใน
การยีดกระชากง่าน[15] นอกจากนี้ยังพบว่ามันยีดประสาท
พวก opioids และ peptides อาจมีความสำคัญในการควบคุม
การทำงานของระบบประสาทอยู่ในระดับประสาท
กลาง[16,17] ซึ่งมีผลในการควบคุมการชักกล้าเนื้อ

ประสบการณ์ของการเก็บและลูกปัสสาวะ

ปัจจัยที่เกี่ยวข้องของกระเพาะปัสสาวะที่ส่ง
มาอย่างมีสัดส่วนในอัตรา 1-2 มักมีต่อต้านที่เข้าก่อนใด
ที่จะแข็งขึ้น แต่ก่อน ๆ จะไม่มีความสัมพันธ์ใด ๆ เมื่อเรียน
ปัสสาวะเพิ่มมากขึ้น จะมีความรู้สึกไม่สบายริงที่ pelvis หรือ
perineum ซึ่งจะเป็นการกระชากความผิดไปข้างมากที่
แล้วความรู้สึกนั้นจะหายไป แต่ตอนที่มีการบริวารเป็นต้นขึ้น
ความรู้สึกอาจกลับมาที่มีมากขึ้นเร็ว ๆ ความรู้สึกนี้มีตัวบ
อยู่ที่ stretch receptor ที่กล้ามเนื้อดีทรูสอร์ (detrusor) และมีเราคา
ประสาทถ้าเป็นประสาทมีการขยายตัวינוของ ซึ่งมีความรู้สึกเนื้อเยื่อต่ำ (lower abdominal dissection) ซึ่งมี
ประสาทเนื้อเยื่อที่มีซ่อนหน้าจุดที่ ซึ่งอาจเกิดขึ้นเป็น
เป็น stretch receptor ของ trigone ซึ่งเป็นตัวของบริเวณ
ประสานพื้นผิวของผิวสัณฐานตีนที่มีความรู้สึกต่ำไม่สามารถแก้ไข
รู้สึกที่เกี่ยวกับสภาพแวดล้อมของกล้ามเนื้อของระยะ ทำให้
ประสานทางประสาทพูดคำว่า pudendal เนื่องจากสินสุด
จะเห็นความรู้สึกต่าง ๆ นี้มีการควบคุมระหว่างประสา
แตกต่างกัน ล่าสุด Nathan ได้เสนอรายละเอียด (19) อย่างไร
ก็ตามจุดเริ่มต้นที่เกี่ยวกับการเพิ่มความต้านในกระเพาะ
ประสานทางประสาทที่ให้ประสานทางประสาทต่อร่างกาย การขยาย
ด้านของกระเพาะความต้านจะอยู่ในด้านของพื้นที่ที่จะให้
เกิดความรู้สึกต่าง ๆ แต่มีความซับซ้อนอยู่ในกลไกที่สำคัญอย่าง
หลักของการควบคุมไม่เพียงประสาทเท่านั้น แต่ยังมีการควบคุม
ด้านโดยหัวใจและกล้ามเนื้ออื่น ๆ ของกล้ามเนื้อดีทรูสอร์ (detrusor) ตลอดเวลา
จนกระทั่งการควบคุมได้เต็มที่ (19)

ปัจจัยการควบคุมที่เข้าใจไม่สามารถกระตุ้นให้
ประสานทางประสาทดีทรูสอร์ทำงานได้อสะดวกมีความสูงอยู่
จุดเริ่มต้น (critical level) (19) เมื่อมีจุดนั้นประสานทางประ
สาทดีทรูสอร์จะกระตุ้นให้ผิวสัณฐานตีน detrusor ผลิตค่าเพื่อให้กล
กระเพาะอยู่ การควบคุมต่อไปในโปรตอโปรตองการควบคุม
กระเพาะไม่เพียงจะกลายเป็นของกระเพาะ (bladder neck) คือค่า
การเต็มที่ และป้องกันและป้องกันกระเพาะอย่างเข้มข้นสุขอนิพนธ์
ของกระเพาะสัณฐานตีนที่ช่วยดูแล และป้องกันเรื่องเจ็บ
ออกจากต่อมที่เป็นส่วนในสุดท้ายคือกระเพาะวัสดุาสัณฐาน
การควบคุมของกล้ามเนื้อดีทรูสอร์ (detrusor) วัสดุาสัณฐานได้
เกิดมีประสานทางประสาทเกี่ยวข้องประสานทางประ
สาทมาเพื่อให้การกระตุ้นกระเพาะได้เต็มที่ (19) ประหยัด
การกระตุ้นไม่เพียงจะกลายเป็นของกระเพาะสัณฐาน
ที่ช่วยดูแล และป้องกันเรื่องเจ็บ ดังนั้นจะไม่ง่ายหรือไม่ได้ผล
มีผู้พบเห็นว่าเจ็บอาจเกิดขึ้นในกระเพาะมีการควบคุมของกระเพาะ
การควบคุมที่ช่วยดูแล และป้องกันเจ็บ Analytics ซึ่งทำให้มี
การควบคุมเกิดขึ้นได้ในกระเพาะสัณฐาน (detrusor) ค่าต่ำ (23)

บริเวณของสมองส่วนหนึ่งที่เกี่ยวข้องในการควบคุม
ประสาน

มีผู้สังเกticker การควบคุมบริเวณของ hypothalamus และ sepal area ในแนวสมองยาวและบริเวณ hypothalamus (24) เนื่องจาก hypothalamus มีการติดต่อให้สัณฐานตีนอยู่ใน locus coeruleus ดังนั้นจะมีโอกาสทำให้เกิดการกระตุ้น
หรือกระตุ้นบริเวณของ limbic system มีผลต่อการควบคุม
ประสานเข้าด้วยกัน ซึ่งอาจใช้บริเวณได้ว่าทำให้การกระตุ้น
และ
ภาพตัวอย่างที่ 32 ตอนที่ 9 นักเรียน 2531 ภาพตัวอย่างที่ 32 ตอนที่ 9 นักเรียน 2531

พฤติกรรมซึ่งมีผลต่อการทรงประสาน (24)

มีรายงานว่าบริเวณของสมองที่เกี่ยวข้องกับการทรงประสานซึ่งอยู่ที่ใต้หัวใจใต้ถึงตรงกลาง ๆ ของ frontal lobe ซึ่งรวมถึงบริเวณ superior frontal gyrus, anterior cingulate gyrus และ genu ของ corpus callosum (25) ซึ่งมีบทบาทหน้าที่เรื่องการกระทำประสานใดๆที่เกี่ยวข้องกับ ประสานอย่างไม่เป็นผลหรือไม่ได้ผลที่เกี่ยวกับการควบคุมของ อานาจจิตใจ จึงเห็นได้ว่าบริเวณเหล่านี้ถือเป็นส่วนนี้คือ

ควบคุมการกระทำประสาน

นอกจากนี้ยังมีหลายบริเวณของสมองที่เกี่ยวข้องกับ การกระทำประสานด้วยระยะไกลหรือระยะไกลที่เสนอโดย Fletcher and Bradley (26) แต่บริเวณต่าง ๆ เหล่านี้ไม่ต้องมีความสำคัญ ต่อการกระทำประสานในสภาพปกติ

รีเฟล็กซ์ของการกระทำประสาน อาจสรุปได้ดังนี้ (รูปที่ 2)

Figure 2 The interrelationship of the voiding reflexes described in the text.

1. จาก stretch receptor ที่กล้ามเนื้อดี trouter
ส่งกระแสประสาทตามประสาท pelvic เข้าที่ไขสันหลัง แล้วส่งซึ่งไปที่ศูนย์กลางบริเวณเซลล์ของ locus coeruleus ที่ระดับ pons เลยมีประสาทล่าสุดกับผ่านขึ้นผ่านศีรษะ เกิดก่อนทำให้กล้ามเนื้อดี trouter หดตัว เพื่อตอบสนองต่อการยืดต่อกับกระทำประสาน: จำนวนรีเฟล็กซ์นี้ถือที่ต่ำที่สุด เท่าที่ได้จากการกระทำประสานที่เกิดจากประสาท hypogastric ซ้ำรับความรู้สึกเกี่ยวกับความตั้งบริเวณท่อไขสันหลังและจากกล้ามเนื้อดี

2. จากตัวระบายเซลล์เก็บช่วงเวลา แต่ส่งซึ่งไปที่ตัว เซลล์ประสาทของอินฟรั้นซ์ในไขสันหลัง แล้วส่งกระแสประสาทกลับสู่เซลล์ประสาทของผ่านร่างกายที่ ganglia ในระหว่างที่กระทำประสานอย่างมีประสานไม่ เดิม รีเฟล็กซ์นี้จะหายไปในขณะที่การกระทำประสาน

3. รีเฟล็กซ์เพิ่มความดันในกระทำประสานที่ ที่ทำให้กระทำประสานในระหว่างที่มีปริมาณประสานเพิ่มขึ้น และรีเฟล็กซ์ที่ทำให้กระทำประสานเพิ่มขึ้นในระหว่างการ กระทำประสาน รีเฟล็กซ์ที่เริ่มต้นมีประสานมากเข้าเมื่อมีต่ำ 1 และ 2 แต่ดูเหมือนจะยังคงกระทำประสานอยู่ที่ไม่ทราบแน่นอน

4. รีเฟล็กซ์ที่เกี่ยวข้องกับการควบคุมและอยู่ภายใต้อานาจจิตใจ คือ อาจต้องการกระทำประสานโดยที่กระทำประสานอยู่ไม่ได้หรือไม่ได้ต้องการมีกระทำประสาน เลยแล้ว รีเฟล็กซ์นี้จะหายไปเรื่อยๆหลังจากกระทำประสาน ให้รู้ในระดับที่ต้องการ

5. รีเฟล็กซ์ที่เกี่ยวข้องกับการหลุดของกล้ามเนื้อดี trouter ในระหว่างการกระทำประสานซึ่งมีประสานไม่
ตามประสาน pudendal เพื่อไม่ให้ทานแน่นมาต่ำบริเวณที่ท้องที่ใส่หรือที่เสียหาย(27)

การกลืนปัสสาวะไม่หยุด (Urinary Incontinence)

ตั้งที่กล่าวแล้ว urethral closing pressure จะเพิ่มขึ้นได้ด้วยการเปลี่ยนแปลงการทรงกลมเนื่องจากการ การไอหรือจาม หรือการอกกล้ามเนื้อ ซึ่งจะทำให้ท้องที่ใส่ขยายและเพิ่มความดันขณะนั่งทำให้ท้องที่ใส่ปิด ปัสสาวะไม่รับในลอง

อกมากในผู้หญิงที่ยืดกล้ามเนื้อท้องที่ใส่จะมีความเครียดเกิดขึ้น (urinary stress incontinence)(27) การตรวจวิเคราะห์ urethral closing pressure profiles ในผู้หญิงเหล่านั้นจะพบว่าระดับต่ำกว่าในผู้หญิงปกติ แต่ฝ่ายในรายห์มว่าการตรวจโดยสวัสดิการบริเวณ

หลากหลายของการกลืนปัสสาวะไม่อยู่ต้องอย่างหนึ่งคือการกลืน pressures detrusor ทำงานไม่ประสานกันซึ่งเรียกว่า detrusor instability หรือ unstable bladder ซึ่งพบมากผู้ป่วยไม่สามารถกลืนปัสสาวะได้ทำให้ต้องปัสสาวะรบกวนเนื่องจากต้องหายนที่กระเพาะเต็มแล้วให้เกิดการแรงดันที่จะทะลุ (urgency) เมื่อจากการกลืนปัสสาวะรับในลองมาก(29) มีรายงานการกระตุ้นคนเสียปัสสาวะ pudendal ในแนวจะเกิดรีเฟล็กซ์ย้อนกลับการทดสอบการระบุที่ใส่ปิดความ

ต้านทานในกระเพาะปัสสาวะสูง รีเฟล็กซ์นี้มีประสานน้ำเข้ามาทางปัสสาวะ pudendal และน่าจะทำส่งเสียปัสสาวะ pelvic(30) ต้องมีผู้ป่วยผู้เป็นกลืนไม่เป็นไปในผู้ป่วยโดยใช้ไฟฟ้ากระตุ้นในช่องคลอด (intravaginal electrical stimulation)

ปรากฏว่าสามารถใช้รักษาอาการกลืนปัสสาวะไม่อยู่ผู้ป่วยจาก detrusor instability ได้(31,32) การใช้ไฟฟ้ากระตุ้นภายในช่องคลอดมิได้ นอกจากนี้ยังมีการยืดกล้ามเนื้อท้องที่ใส่ (urethral closure) ด้วย ซึ่งชื่นชอบความถี่ (frequency) ของการกระตุ้น(33) จากการศึกษาเบื้องต้นของ Lindström และ Sudsuan (อังกฤษไม่พิมพ์) พบว่าการกระตุ้น branches ต่าง ๆ ของ alfa ปัสสาวะ pudendal ในแนวมีเพียงเฉพาะการกระตุ้น dorsal clitoris branches เพียงเพียงสถานะ multiunit efferent activities ของเส้นประสาท pelvic ที่ไปกระตุ้นปัสสาวะ สำหรับกระตุ้น branches อื่น ๆ เช่น เส้นประสาทที่ไปยัง anal sphincter, urethralis muscle, Sphincter ani muscle และlevator ani มีผลน้อย

อ้างอิง

10. de Groat WC. Nervous control of the urinary bladder of the cat. Brain Res 1975 Apr 11; 87(2-3): 201-211
12. Kawatani M, Erdman SL, de Groat WC, Vasoac-
tive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat. J Comp Neurol 1985 Nov 15; 241(3) : 327-347


19. Plum F. Autonomic urinary bladder activity in normal man. AMA Arch Neurol 1969; May; 2(3) : 497-503


25. Andrew J, Nathan PW. Lesions of the anterior frontal lobes and disturbances of micturition and defecation. Brain 1964 Jun; 87 (2) : 233-262


27. Brindley GS, Rushton DN, Craggs MD. The pressure exerted by the external sphincter of the urethra when its motor nerve fibers are stimulated electrically. Br J Urol 1974 Aug; 46(4) : 453-462


