Comparison of urinary citrate between patients with nephrolithiasis and healthy controls

Sarawut Saepoo* Dusit Adstamongkonkul*
Piyaratana Tosukhowong*** Chagkrapan Predanon***
Vorasuk Shotelersuk**** Chanchai Boonla***

Saepoo S, Adstamongkonkul D, Tosukhowong P, Predanon C, Shotelersuk V, Boonla C.
Comparison of urinary citrate between patients with nephrolithiasis and healthy controls.

Objectives: Low urinary citrate excretion is a frequent metabolic abnormality found in kidney stone patients. The currently used definition of hypocitraturia (urinary citrate ≤ 320 mg/day) may not be applicable for Thai population since a large proportion of healthy controls are classified as hypocitraturic. The present study was aimed to determine urinary citrate level in nephrolithiasis patients compared to healthy controls, to evaluate diagnostic power of urinary citrate determination as well as to establish a hypocitraturic cutoff for Thais.

Methods: One hundred and fourteen patients with nephrolithiasis and 90 healthy subjects were recruited. Urinary citrate was measured by citrate lyase method. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic power of the test and fine an appropriate cutoff point. Logistic regression was carried out to quantify magnitude of association between hypocitraturia and nephrolithiasis.

* Department of Biochemistry, Faculty of Medicine, Chulalongkorn University
** Biochemistry and Molecular Biology of Metabolic Diseases Research Unit, Faculty of Medicine, Chulalongkorn University
*** Division of Urological Surgery, Khonkaen Hospital, Khon Kaen 40000 Thailand
****Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
Results: Nephrolithiasis patients excreted urinary citrate significantly lower than the controls. ROC analysis revealed an area under curve of 0.806 (95%CI; 0.744 - 0.864). The cutoff point at ≤ 200 mg/day was chosen to define hypocitraturic state. Sensitivity and specificity of the test were 84.21% and 64.44%, respectively. Hypocitruria in healthy and nephrolithiasis groups were accounted for 35.56% and 84.21%, respectively. A significant association between hypocitraturia and nephrolithiasis was observed with adjusted odds ratio of 9.62 (95%CI; 4.92 - 18.78). Patients with uric acid stone trended to excrete urinary citrate lower than those with other types, although there was no statistical significance.

Conclusion: Hypocitraturia was a significant metabolic disturbance in Thai nephrolithiasis patients. Its definition for the Thais should be re-set to ≤ 200 mg/day in order to increase specificity and reduce false positive rate. Combination of urinary citrate with other metabolic risk factors would improve the power of diagnosis and identification of individuals at risk of kidney stone formation.

Keywords: Urinary citrate, hypocitruria, nephrolithiasis, kidney stone, diagnostic values.

Reprint request: Boonla C, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Email: Chanchai.b@chula.ac.th

Received for publication. August 20, 2008.
ตาราง รายละเอียดการประเมินระดับชิ่งไทยในเพศผู้และสตรีในวัย 50 ปี ที่ใช้ ROC curve ในการวิเคราะห์การเกิดโรคต้อกระจก ผลการทดลอง:

- ผู้ป่วยมีช่วงชิ่งไทยต่ำกว่า 0.806 นั้น ค่าพยากรณ์ว่าง 84.21% และ 6.44%
- ผู้ป่วยมีidity ระหว่าง 0.806 ถึง 0.864 นั้น ค่าพยากรณ์ว่าง 84.21% และ 64.44%
- ผู้ป่วยมีช่วงชิ่งไทยต่ำกว่า 0.864 นั้น ค่าพยากรณ์ว่าง 84.21% และ 64.44%
สรรปผล : ภาวะขี้หงายในปัสสาวะต่ำเป็นปัจจัยเด่นทางแนว[indications]ที่สำคัญของในผู้ป่วยโรคนิวโรไท oid นิยามของภาวะขี้หงายนิวโรไทได้รับการยอมรับโดยศัพท์ในภาษาไทยเป็น ≤200 มิลลิกรัม/ด้าน เพื่อเพิ่มความจำเพาะและข้อยกตัวราคามีผลผลลัพธ์ในการวินิจฉัย การวินิจฉัยระดับขี้หงายนิวโรไทในปัสสาวะร่วมกับความเสี่ยงทางแนว[indications] อื่นๆ ตรวจสอบความถูกต้องในการวินิจฉัย และสามารถนั่นมาใช้ประเมินความเสี่ยงต่อการเกิดโรคนิวโรไทในบุคคลทั่วไปได้

คำสำคัญ : ขี้หงายนิวโรไท, ภาวะขี้หงายนิวโรไทต่ำ, โรคนิวโรไท, ค่าการวินิจฉัย
Kidney stone formation is a complex process of development involving interplays of environmental, anatomical and genetic factors. The prevalence of kidney stone is increasing worldwide. This is considered an impact of a major change in lifestyle and dietary habits during the past decade. Climatic change is believed to have contributed to the increasing prevalence of stone disease. A recent study showed that the US stone belt is expanding north and westward from the southeastern region in response to the global warming. In Thailand, nephrolithiasis is endemic; its prevalence varies up to 16.9% depending on geographical regions. The Thai stone belt is considered to be spanned from the Northeast toward the North.

The likelihood of stone formation increases with age, body mass index and positive family history. However, the most important stone risk factor is metabolic abnormality that causes urine to be supersaturated, leading to crystal formation. Increased urinary excretion of stone promoters, e.g., hypercalciuria and hyperoxaluria is a major risk factor in the West. In contrast, our study in Thai stone cases demonstrated that the decrease in stone inhibitor excretion, particularly hypocitraturia and hypokaluria, is the principal cause.

Hypocitraturia is also prevalent in stone patients in the West and it is considered as a significant risk for stone recurrence. Therefore, the drug of choice for preventing stone relapse is potassium citrate salt that provides alkalining and citruric effects. Renal stone patients are also frequently presented with high oxidative stress and enhanced renal tubular damage. Recently, we studied the medicinal quality of our lime powder regimen in nephrolithiasis patients and found that it not only increases urine pH and citrate excretion, our regimen also exerts an antioxidative action and attenuates renal tubular injury in the patients, suggesting a better alternative for kidney stone prophylaxis. Excretory levels of urinary citrate reported in western stone cases are usually greater than that in Thai patients. A study in Japanese population also documented a higher level of urinary citrate compared to the Thai population. This may be due to the differences in dietary habit, genetic background or even laboratory technique. Thus, it is necessary to establish an appropriate cutoff of urinary citrate in Thai stone patients. The definition of hypocitraturia that currently uses is urinary citrate ≤ 320 mg/day. To our experience, this cutoff point is not suitable (too high) for Thai kidney stone patients as it provides a low specificity as well as a huge fraction of false positive rate.

In this study, we aimed to determine urinary citrate levels in nephrolithiasis patients compared to healthy controls, and to set up an appropriate cutoff point for hypocitraturia that provided a more accuracy in discrimination of stone patients from the controls.

Subjects and Methods

Ninety healthy subjects (aged between 21 and 61 years old) and 114 nephrolithiasis patients (aged between 18 and 60 years old) were recruited for the study. The mean age of the healthy controls and stone patients were 41±10 and 43±10 years old, respectively. The male-to-female ratios were 39:51 (0.76) and 56:58 (0.97) in the healthy and patient groups. The nephrolithiasis patients were admitted to King Chulalongkorn Memorial Hospital, Khon Kaen
Hospital or Rajavithi Hospital between 2005 and 2008. All admitted patients underwent surgical removal of stone, either by open surgery, percutaneous nephrolithotomy, or shock wave lithotripsy. Patients associated with anatomical anomaly of kidneys and malignancies were excluded. Healthy volunteers with no history of urinary stone disease evaluated were analyzed by urine strip to warrant the normal urinary profile. Informed consents were obtained from all participants and the research protocol was approved by the Ethics Committee, Faculty of Medicine, Chulalongkorn University.

24-hour urine and stone specimens collection

Thymol was used as preservative in the collection of 24-hr urine. All subjects were well instructed for collecting urine specimen by themselves. In the patients group, urine samples were collected preoperatively. The urine samples were kept at -70°C prior to analysis. In adequate collection of urine specimens indicated by urine creatinine that was less than 0.5 mg/day were excluded.

Stone specimens obtained from nephrolithiasis patients were thoroughly washed three times with distilled water, dried in oven at 60-65°C for 16 hours (overnight), and grind into powder using pestle and mortar. Stone powder samples were sent to the Scientific and Technological Research Equipment Centre, Chulalongkorn University for mineral composition analysis using Fourier-transform infrared spectroscopy. Stone types were classified according to the main mineral component into four types, i.e., calcium oxalate (CaOx), calcium phosphate (CaP), uric acid (UA) and magnesium ammonium phosphate (MAP). Of 114 nephrolithiasis patients, 88 had enough stone materials for crystalline analysis. CaOx, CaP, UA and MAP stones were accounted for 60 (68%), 8 (9%), 11 (13%) and 9 (10%), respectively.

Determination of urinary citrate

Level of citrate in 24-hr urine samples was determined by citrate lyase method. In brief, urine (200 μl) was added to Glycine-glycine buffer containing nicotinamide reduced form (NADH) and lactate dehydrogenase. The mixture was thoroughly mixed and stood at ambient temperature for 5 minutes. Absorbance at 340 nm was measured (A1). Citrate lyase (Sigma, St. Louis, MO, USA) was added to the mixture. After mixing, the solution was left at ambient temperature for another 8 minutes and was measured for a second absorbance (A2).

Concentration of citrate (g/L) was computed from \((V \times MW \times \Delta A) / (E \times d \times v \times 1000)\), where \(V\) is final volume (3.14 ml), \(MW\) is molecular weight of citrate (192.1 Da), \(\Delta A\) is A1-A2, \(E\) is absorption coefficient of NADH at 340nm (6.3 mM\(^{-1}\) cm\(^{-1}\)), d is cuvette pathlength (1 cm), v is sample volume (0.2 ml).

Statistical analysis

Mean ± standard deviation (SD) was used as representative of normally distributed data. Data with skewed distribution were presented as median and interquartile range (IQR). Difference between two independent groups was tested by two-sample t-test or Mann-Whitney test as appropriated. Comparison between more than two independent groups was carried out by one-way ANOVA or Kruskal-Wallis test.

To evaluate the diagnostic power of urinary citrate determination, receiver operating characteristic
(ROC) curve analysis was carried out. How efficient the test can distinguish between diseased and non-diseased status is indicated by an area under curve (AUC) of ROC. An AUC of 0.5 indicates that the test can not separate diseased individuals from non-diseased individuals (having 50% sensitivity and 50% specificity). An AUC of 1.0 indicates an ideal test that can perfectly differentiate between the two groups (achieving 100% sensitivity and 100% specificity). Thus, a greater AUC indicates a better diagnostic test. In addition, a good diagnostic test should have small false positive and false negative rates. An appropriate cutoff was chosen from the ROC curve to compute the diagnostic values of urinary citrate determination.

Logistic regression was used to quantify the association (odds ratio, OR) between hypocalcitraturia and nephrolithiasis. All statistical analyses were performed by STATA version 8.0 (College Station, TX, USA). Two-side analysis at a significance level of $\alpha = 0.05$ was set for all calculations.

Results

Of 204 subjects, 114 subjects were renal stone patients and the remainder ($n = 90$) was healthy controls as shown in Table 1. Mean age between the two groups was not significantly different (43 ± 10 vs. 41 ± 10 years; $P = 0.105$). The patient group comprised of 56 (49%) males and 58 (51%) females whereas the healthy group contained 39 (43%) males and 51 (57%) females. Gender distribution between these two groups was not statistically different ($P = 0.410$). This indicates the equivalence of demographic figure between the controls and the patients.

Urinary level of citrate in nephrolithiasis group was significantly lower than that in the control group (median (IQR); 80.9 (120.9) vs. 262.5 (233.2) mg/day; $P < 0.001$) (Fig. 1). Figure 2 shows the distribution of urinary citrate excretions compared between healthy controls (Fig. 2a) and nephrolithiasis patients (Fig. 2b). An obvious difference of urinary citrate distribution between the two groups was found. The majority of stone patients had low urinary citrate levels while most of healthy individuals excreted citrate at higher levels. However, a minute fraction of healthy controls showed a decreased urinary citrate excretion resembling stone patients.

Table 1. Demographic data of subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Healthy controls</th>
<th>Nephrolithiasis patients</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects (n)</td>
<td>90</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>41 ± 10</td>
<td>43 ± 10</td>
<td>0.105*</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>41 (15)</td>
<td>46 (15)</td>
<td></td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td>0.410b</td>
</tr>
<tr>
<td>Male</td>
<td>39 (43)</td>
<td>56 (49)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>51 (57)</td>
<td>58 (51)</td>
<td></td>
</tr>
</tbody>
</table>

* : Two-sample t-test, **: chi-square test
Figure 1. Box-Whiskers plot shows comparison of urinary citrate excretion between healthy control (n = 90) and nephrolithiasis patients (n = 114). Level of urinary citrate in nephrolithiasis patients was significantly lower than that in the controls (Mann-Whitney test, P < 0.001). Outliers are omitted.

To evaluate the clinical value of urinary citrate in separating nephrolithiasis from healthy subjects, an ROC curve was generated and the cutoff point was chosen to calculate the diagnostic values. An area under ROC curve of urinary citrate determination was 0.806 (95%CI: 0.744 - 0.868) (Fig. 3). At a commonly accepted cutoff point of 320 mg/day, the test provided accuracy, sensitivity, false positive rate and false negative rate of 69.12%, 94.74%, 36.67%, 63.33% and 5.26%, respectively (Table 2). A higher accuracy (75.49%) and lower false positive rate (35.56%) were obtained at a cutoff point of 200 mg/day. Sensitivity, specificity, and false negative rate at this cutoff were 84.21%, 64.44%, 15.79%, respectively (Table 2). Thus, we chose a cutoff at 200 mg/day for defining hypocitraturic trait in Thai population in stead of the currently accepted definition at 320 mg/day. Individuals with urinary citrate ≤ 200 mg/day were defined as hypocitraturia whereas those with a greater urinary citrate levels were identified normocitraturia.

Based on the new cutoff point, hypocitraturia was found 96 out of 114 (84.21%) in nephrolithiasis patients and it was significantly associated with nephrolithiasis (P < 0.001) (Table 3). In the control group hypocitraturia was accounted for 35.56% (32/90).

To assess the magnitude of association between hypocitraturia and kidney stone disease, logistic regression was carried out. Crude OR of hypocitraturia for kidney stone disease was 6.67 (95%CI; 4.98 - 18.76, P < 0.001). After screening for
Figure 2. Distribution of urinary citrate levels in healthy controls (a) and nephrolithiasis patients (b). The majority of nephrolithiasis patients excreted urinary citrate less than 200 mg/day.

age and sex, the adjusted OR of 9.62 (95%CI; 4.92-18.78, \(P < 0.001 \)) was revealed (Table 3). This means that individuals with hypocitraturia had 9.62 times higher probability to develop kidney stone than those without it. Our finding confirmed that hypocitraturia increased risk for kidney stone formation.

To evaluate whether excretion of urinary citrate was associated with the type of stones, urinary citrate levels were compared among stone types. Of 144 cases, 88 had known stone types which were classified as CaOx \((n = 60) \), CaP \((n = 8) \), UA \((n = 11) \) and MAP \((n = 9) \) stones. Median (IQR) of urinary levels in CaOx, CaP, UA and MAP were 72.15 (88.39), 114.24 (203.27), 27.64 (79.83) and 83.73 (104.26), respectively. Levels of urinary citrate among these four groups of stones were not significantly different \((P = 0.102) \) (Fig. 4). However, UA stone seemed to have lowest excretion of urinary citrate compared to the others.
Figure 3. An ROC curve of urinary citrate determination. Area under ROC curve of 0.806 (95%CI: 0.744 - 0.864) was obtained.

Table 2. Diagnostic values of urinary citrate determination at various cutoff values for classifying nephrolithiasis patients from healthy subjects

<table>
<thead>
<tr>
<th>Diagnostic values (%)</th>
<th>Urinary citrate cutoff (mg/day) for positive result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 320</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>94.74</td>
</tr>
<tr>
<td>Specificity</td>
<td>36.67</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>65.45</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>84.62</td>
</tr>
<tr>
<td>False positive rate</td>
<td>63.33</td>
</tr>
<tr>
<td>False negative rate</td>
<td>5.26</td>
</tr>
<tr>
<td>Accuracy of test</td>
<td>69.12</td>
</tr>
</tbody>
</table>

Table 3. Association of hypocitruria with nephrolithiasis

<table>
<thead>
<tr>
<th>Citraturic status (%)</th>
<th>Healthy (n=90)</th>
<th>Nephrolithiasis (n=114)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(< 200mg/day)</td>
<td>(> 200mg/day)</td>
<td></td>
</tr>
<tr>
<td>- Normocitruria</td>
<td>58 (64.44)</td>
<td>18 (15.79)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>- Hypocitruria</td>
<td>32 (35.56)</td>
<td>96 (84.21)</td>
<td></td>
</tr>
</tbody>
</table>

P value from chi-square test
Table 4. Odds ratios for nephrolithiasis regarding to hypocitraturia

<table>
<thead>
<tr>
<th>Hypocitraturia</th>
<th>Crude OR (95%CI)</th>
<th>P value</th>
<th>Adjusted OR* (95%CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>- Yes</td>
<td>9.67 (4.98-18.76)</td>
<td>< 0.001</td>
<td>9.62 (4.92-18.78)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

* Controlled for age and sex.

Figure 4. Box-Whiskers plot shows comparison of urinary citrate excretion among patients with different stone types. Levels of urinary citrate in patients with CaOx (n = 60), CaP (n = 8), UA (n = 11) and MAP (n = 9) were not significantly different (Kruskal-Wallis test, P = 0.102). Patients with uric acid stone trended to have the lowest urinary citrate excretion. Outliers are omitted. CaOx; calcium oxalate, CaP; calcium phosphate, UA; uric acid, MAP; magnesium ammonium phosphate.

Discussion

Decreased urinary excretion of citrate is frequently found in nephrolithiasis patients and is associated with the recurrence of calculi. Citrate is a potent urinary stone inhibitor. It has a higher affinity than oxalate to bind calcium and form a soluble complex, instead of an insoluble calcium oxalate salt. Citrate can also adsorb on the crystals' surface to inhibit crystal growth and agglomeration. Thus, determination of urinary citrate is clinically useful for assessing the risk of stone formation.

In this study, we found that nephrolithiasis patients excreted urinary citrate significantly lower than the healthy controls. An appropriate cutoff point of urinary citrate for Thai population should be at 200 mg/day. Hypocitraturia was significantly associated with nephrolithiasis with an adjusted OR of 9.62 (95% CI; 4.92 - 18.78). Among various stone types, urinary citrate levels were not statistically different.

Common metabolic risk factors for kidney stone include hypercalciuria, hypocitraturia, hyperoxaluria, hyperuricosuria and abnormally low urinary
pH. Hypocitraturia is a leading metabolic abnormality found in Thai patients. According to the literature, hypocitraturia may be secondary to potassium depletion, metabolic acidosis or having an idiopathic cause. Our previous data found that hypocitraturia and hypokaliuria was frequently coincided suggesting potassium deficiency as a responsible etiology. Low intake of dietary citrate is also associated with hypocitraturia. Our recent finding showed that patients with kidney stone consumed low amount of citrus-fruits and vegetables. This is suggestive of an additional reason for low urinary citrate excretion. However, genetic susceptibility to hypocitraturia cannot be totally ruled out. A study in Japanese stone formers found an association of sodium-dicarboxylate cotransporter-1 (NaDC-1) polymorphism with low excretion of urinary citrate. Genetic risk of hypocitraturia in Thai nephrolithiasis patients is waiting to be investigated.

Urinary citrate excretion in our patients was obviously lower than that reported in the West and Japanese cases. For instance, mean ± SD of urinary citrate in recurrent kidney stone formers and controls in the Italian population were 2.06 ± 1.04 mmol/day (395.77 ± 199.80 mg/day) and 3.42 ± 1.33 mmol/day (587.05 ± 255.52 mg/day), respectively. Although reasons for this phenomenon have not been described, it may be due to the difference in dietary habit, genetic basis or even laboratory variation. Thus, the traditionally accepted definition of hypocitraturia at ≤ 320 mg/day may not be applicable for the ethnically-different populations such as the Thais.

Based on ROC curve analysis, an AUC of 0.806 (95%CI; 0.744 - 0.864) for urinary citrate determination in our populations were obtained. This indicated that the test is adequate for diagnostic purpose. At the cutoff of ≤ 320 mg/day, the test provided a high false positive rate (63.33%) and low specificity (36.67%) with a probability of correctly classified of 69.12%. This means that a huge proportion of healthy subjects would be defined as hypocitraturic. To increase the specificity and accuracy, we chose the cutoff point at ≤ 200 mg/day. At this point, it imparted adequate sensitivity (84.21%) and specificity (64.44%). Additionally, the false positive rate went down from 63.33% to 35.56%. A combination with other metabolic abnormalities would improve the diagnostic power for kidney stone disease. Based on our finding, we concluded that a more appropriate cutoff point for defining hypocitraturic state in Thai populations is ≤ 200 mg/day.

Hypocitraturia in nephrolithiasis and control groups were accounted for 84.21% and 35.56%, respectively. It was strongly associated with nephrolithiasis with adjusted OR of 9.62 (P < 0.001). These data confirm that hypocitraturia is an important risk factor for kidney stone disease. A recent study of metabolic risk factors in Thai stone formers reported that hypocitraturia in stone formers and normal controls were found in 69.6% and 55.9%. Since their definition for hypocitraturia was urinary citrate ≤ 2 mmol/day (384.24 mg/day), a substantial proportion of normal subjects were classified as hypocitruria (55.9%) indicating a high false positive rate. Again, we suggest that a cutoff at ≤ 200 mg/day would be more applicable for Thai population.

We also investigated whether urinary citrate excretion varied by stone types. Levels of urinary citrate among patients with CaOx, CaP, UA and MAP
stones were not significantly different. However, UA stone patients tended to have lowest urinary citrate excretion. A significant reduction of urinary citrate in UA stone patients compared to calcium stone patients has been demonstrated. Uric acid stone is associated with abnormally acidic urine (pH < 5.5). At low pH, citrate\(^3\) is protonated to form citrate\(^2\) which is further uptake into renal proximal tubular cells by a dicarboxylate cotransporter, NaDC-1, leading low excretion of urinary citrate. An insignificant association of UA stone with decreased urinary citrate excretion found in this study may be due to the small sample size.

In conclusion, the present study confirms that nephrolithiasis patients excrete urinary citrate significantly lower than healthy controls. Cutoff point for defining hypocitraturia in Thai people should be made lower from \(\leq 320\) mg/day to \(\leq 200\) mg/day in order to obtain a higher diagnostic power for separating the healthy individuals from kidney stone patients. A strong association between hypocitraturia and nephrolithiasis is found emphasizing an important metabolic risk factor for kidney stone formation. Urinary citrate determination is recommended to perform in all stone patients as well as in healthy individuals who are at risk of stone formation in order to provide an appropriate mean for preventing the development of calculi.

Acknowledgements

Financially, this research is supported by the Graduate School, Chulalongkorn University, S.S. was awarded a thesis scholarship from the Graduate School, Chulalongkorn University.

References

9. Curhan GC, Willett WC, Speizer FE, Stampfer MJ.

citrate therapy on stone recurrence and residual fragments after shockwave lithotripsy in lower caliceal calcium oxalate urolithiasis: a randomized controlled trial. J Endourol 2002 Apr; 16(3): 149 - 52

