Material and Method: Participants were 20 college rugby football players at Institute of Physical Education, Bangkok Campus. The purposive random sampling was used to recruit 40 volunteers. Simple random sampling was conducted later to select the 20 participants. Then, using VO\textsubscript{2}Max, the participants were divided into four groups. Each group had five participants. Group A received placebo, whereas group B – D received 600, 900 and 1,200 mg of garlic extract, respectively. Five hours after ingestion of the tablet form, subjects underwent an incremental bicycle ergometer test by Astrand and Ryhming protocol for aerobic performance test (VO\textsubscript{2}Max) and Wingate protocol for determination of anaerobic performance. A pilot study was conducted to form a load guideline for subjective exhaustion time. In that study, the work load of 750 kgs/min. was used. Before and after receiving garlic extract or placebo, blood pressure was monitored. Data were analyzed using One-Way ANOVA, Honestly Significant Different (HSD) and a paired t-test. The significant level was set at 0.05.

Results: VO\textsubscript{2}Max of the four groups were significantly different. HSD was used to test the difference of each pair. Results showed significant difference (p = .05). The anaerobic performances including Peak Power Output (PP), Relative Peak Power Output (RPP), and percentage of Fatigue Index (% Fatigue Index) were not different. The blood pressure was not different for the first week, but became different in the second week (p = .05). The paired t-test revealed that blood pressure of group B (600 mg of garlic extract) was different (t = 4.355; p = 0.012), (t = 8.552; p = 0.001). Moreover, the systolic blood pressure of group C was also significantly different (t = 3.773; p = 0.020).
Conclusions: VO_2 Max of groups that received garlic extract was higher than that of the placebo group. The anaerobic performances (Peak Power Output (PP), Relative Peak Power Output (RPP), Anaerobic Capacity (AC), the Relative anaerobic capacity (RAC) and percentage of Fatigue Index (% Fatigue Index) and endurance time were not different. However, 600 mg of garlic extract reduced both the systolic and diastolic blood pressure, while the 900 mg of garlic extract reduced only the systolic blood pressure in the second week.

Keywords: Garlic extract, Anaerobic and aerobic performance, Rugby football, Herbs, Food supplement.

Reprint request: Thanaponganan N. College of Sport Science, Burapha University, Chonburi 20131, Thailand.

Received for publication. June 15, 2008.
เหตุผลของการทำการวิจัย:

รักษาพยาบาลเป็นภักดีที่มีการระลึกอยู่ตลอดเวลาเพื่อให้เกิดการขาดแคลนได้ตลอดเวลา นักศึกษาที่เข้ารับการพยาบาลจะต้องมีการทดสอบสมรรถภาพเพื่อรักษาพยาบาล
ความพร้อมของงานที่ระบบแผนภูมิและแผนแปลบิก เพื่อจัดการการเปลี่ยนแปลงแผนงานของนักศึกษาที่ต้องการองค์ความหนัก
ของงานต่างจะเป็นระบบแผนภูมิ ในขณะที่ความหนักของการแยก
ยังคงมีอยู่ใช้ระบบแผนงานแบบแผนแปลบิก นอกจากนี้การพยาบาล
เป็นเป้าหมายต่างๆที่ช่วยเสริมสร้างประสบการณ์นักศึกษาพยาบาล

เป้าหมาย/ วัตถุประสงค์:

เพื่อศึกษาผลของสารภิกษุจากการระดับแนว 600, 900 และ 1200
มิลลิกรัม ที่มีผลต่อความสามารถในการสร้างแผนแปลบิกและแผนแปลบิก เวลา
ยืดระยะการออกกำลังกาย และความตันทิ้งของนักศึกษาพยาบาล

รูปแบบการวิจัย

การศึกษาแบบ Completely Randomized Design (CRD)

วิธีการทำการวิจัย:

กลุ่มตัวอย่างเป็นนักศึกษาหญิงจำนวน 40 คน จากสถาบันการศึกษา
วิทยาศาสตร์รูปแบบ โดยสุ่มกลุ่มตัวอย่างแบบง่ายจำนวน 20 คน จากนั้น
แบ่งเป็น 4 กลุ่ม ๆ ละ 5 คน โดยที่กลุ่มที่ ได้รับสาระเรียนแบบ กลุ่มที่ 2 - 4
ได้รับสาระจัดจากการระดับแนว 600, 900 และ 1,200 มิลลิกรัม
ตามลำดับ หลังจากได้รับสารภิกษุจากการกระตือ
หรือสาระเรียนแบบ
เป็นเวลา 5 ชั่วโมง นักศึกษาทุกคนได้รับการทดสอบ
ความสามารถใน
การทํางานแบบแผนภูมิ (VO2 Max) ตามวิธีของ Astrand and Ryhming
ความสามารถในการทํางานแบบแผนแปลบิก ตามวิธีของ Wingate
และผลยืนยันจากการออกกำลังกายการศึกษาร่างของ (Pilot Study)

โดยใช้ความหนักของนักศึกษาที่ 750 kgm./min นอกจากนี้มีการวัด
ความตันทิ้งของ และหลังจากการได้รับสารภิกษุจากการกระตือ
และ
สาระเรียนแบบขั้นสุดที่ได้ถูกนักศึกษาพยาบาล ได้ใช้สถิติการทดสอบ
ความแปรปรวนทางเดียว (One-Way ANOVA) เปรียบเทียบความ
แตกต่างระหว่าง โดยใช้ค่าสถิติ HSD (Honesty Significant Difference)
และทดสอบความแตกต่างระหว่างเวลา โดยใช้การวิเคราะห์สถิติ
Paired Samples t-Test ระดับนัยสำคัญทางสถิติ กำหนดไว้ที่ .05
ผลการศึกษา:

ความสามารถในการทำงานแบบออนไลน์ (VO₂ max) ระหว่างกลุ่มตัวอย่างที่ได้รับสารสถัตจากกระเทียมเมื่อเปรียบเทียบกับสารเส้นแบบมีความแตกต่างกัน (p = 0.05) ไม่พบความแตกต่างสำหรับการทดสอบแบบแผนออนไลน์ (การทดสอบคำกำลังงานที่ทำได้สูงสุด คำสั่งพันธุ์ของคำกำลังงานที่ทำได้สูงสุดต่อมวลของคำสมรรถภาพการใช้พลังงานแบบไม่ใช้ออกซิเจน คำสั่งพันธุ์ของสมรรถภาพการใช้พลังงานแบบไม่ใช้ออกซิเจนต่อมวลของกระเทียม และข้อละดีของปัจจัยความเหนื่อม) พบความแตกต่างของความดันโลหิตในเส้นหน้าอกไม่พบความแตกต่างในเส้นทางที่สอง (p = 0.05) โดยกลุ่มตัวอย่างที่ได้รับสารสถัตจากกระเทียม ขนาด 600 มิลลิกรัม มีความดันโลหิตช่วงบนและช่วงล่างตลอดสองอย่างมีนัยสำคัญทางสถิติ (p = 0.012, 0.001) และกลุ่มที่ได้รับสารสถัตจากกระเทียมขนาด 900 มิลลิกรัมพบว่าความดันโลหิตช่วงบนตลอดอย่างมีนัยสำคัญทางสถิติ (p = 0.020)

สรุป:

ความสามารถในการทำงานแบบออนไลน์ (VO₂ max) ของกลุ่มที่ได้รับสารสถัตจากกระเทียมสูงกว่ากลุ่มที่ได้รับสารเส้นแบบไม่พบความแตกต่างของความสามารถในการทำงานแบบออนไลน์ (คำกำลังงานที่ทำได้สูงสุด คำกำลังงานที่ทำได้สูงสุดต่อมวลของกระเทียม คำการใช้พลังงานแบบไม่ใช้ออกซิเจน คำการใช้พลังงานแบบไม่ใช้ออกซิเจนต่อมวลของกระเทียม และข้อละดีของปัจจัยความเหนื่อม) พบความแตกต่างของความดันโลหิตในเส้นหน้าอกไม่พบความแตกต่างในเส้นทางที่สอง (p = 0.05) โดยกลุ่มตัวอย่างที่ได้รับสารสถัตจากกระเทียม ขนาด 600 มิลลิกรัม มีความดันโลหิตช่วงบนและช่วงล่างตลอดอย่างมีนัยสำคัญทางสถิติ (p = 0.012, 0.001) และกลุ่มที่ได้รับสารสถัตจากกระเทียมขนาด 900 มิลลิกรัมพบว่าความดันโลหิตช่วงบนตลอดอย่างมีนัยสำคัญทางสถิติ (p = 0.020)

คำสำคัญ:

สารสถัตจากกระเทียม, ความสามารถในการทำงานแบบออนไลน์ และออนไลน์, วัตถุประสงค์, สุนัข, ผลิตภัณฑ์เสริมอาหาร.
Rugby football is a heavy and full contact sport in which injuries frequently occur. Thus, both aerobic and anaerobic fitness are required for the athletes. As a result, the athletes usually take intensive fitness training. Nutrients are an essential factor for improvement of the physical performance. Moreover, it is believed that herbs have an influence on physical performance. Garlic is an ancient herb that can be used as food as well as medicine. The ancient Egyptians were said to eat garlic to enhance physical functions during the pyramid construction or playing heavy sports such as weightlifting and swimming. \(^3\)

It is recorded that Greek athletes ate garlic to enhance their physical strength before competing in the first Olympic Games. \(^4\) Previous studies have indicated that garlic lowers cholesterol and blood pressure which is consistent with Madre’s study. Madre found that garlic increases blood circulation in arteries and capillaries and decreases blood viscosity. \(^5\) The reduction in blood viscosity and increased blood circulation may enhance oxygen transportation and improve the function of muscle fibers. \(^6\) Jung et al. (1991) indicated that, after eating garlic for five hours, blood vessels are dilated and the correlated tissue functions are facilitated. This is consistent with Wolf et al. (1990) \(^7\) that five hours after eating 900 mg of garlic, the conjunctival vessels (arterioles & venules) were dilated. The vasodilatation can reduce risks of thrombosis in important organs such as the brain and heart. Inal, et al. (2000) \(^8\) found that garlic extract increases \(V_O^2\) Max and physical endurance. In Thailand, utilization of garlic to improve athletic performance is limited. Most of the studies are related to general health issues. This study aims to investigate the effects of garlic extract on athlete anaerobic and aerobic performance. The findings impact on the development of athlete training and utilization of Thai herbs for sports.

Material and Method

Participants were 20 college rugby football players. The purposive random sampling was used to recruit 40 volunteers. Simple random sampling was conducted later to select 20 participants. Then, using \(V_O^2\) Max, the participants were divided into four groups. Each group has five participants. Group A received placebo, whereas group B-D received 600, 900 and 1,200 mg of garlic extract, respectively.

Variables

Independent variables were 600, 900 and 1,200 mg of garlic extract.

Dependent variables were \(V_O^2\) Max, endurance time, anaerobic performance and blood pressure.

Basic assumptions

1. The Wingate protocol for determination of anaerobic performance was used to evaluate anaerobic performance. \(V_O^2\) Max was measured by Astrand and Ryhming protocol for aerobic performance test. Tests were conducted using an incremental bicycle which is a reliable and widely used method for measurement of aerobic and anaerobic power.

2. Regarding endurance time, the authors had conducted a pilot study in five male college students of the Institute of Physical Education, Bangkok, to identify a load guideline for subjective exhaustion time. In this study, a load of 750 Kg/m/min was used during the testing period.
3. The participants underwent a medical check-up, to ensure that their health was good. The check-up was performed by a registered doctor. A medical record signed by the doctor was used to confirm the participants’ health status. Additionally, all of the participants had never before used garlic extract, Warfarin, or any other anticoagulants. Moreover, the participants agreed to perform the test at full strength.

Definitions
1. Garlic extract is a tablet of garlic powder coated with enteric film. Therefore, the tablet will be dissolved in the intestine. The optimal pH in the intestine will maximize the allicinase functions. As a result, the garlic powder will be digested into allicin and then will be absorbed through the intestine.
2. Placebo is a dummy of the garlic extract. It is edible, made of flour, and has no harmful effect.
3. Athletes are college rugby football players from the Institute of Physical Education Bangkok, aged 18-22 years, in good health, who had not previously used garlic extract, Warfarin or any other anticoagulants.
4. Anaerobic performance consists of Peak Power Output (PP), Relative Peak Power Output (RPP), percentage of Fatigue Index (% Fatigue Index), Anaerobic Capacity, and the relative anaerobic capacity. In this study, the Wingate protocol was used to measure the anaerobic performance.
5. Aerobic Performance is \(V_\text{O}_2 \text{ Max} \), measured by the Astrand and Ryhming protocol for aerobic performance tests.
6. Endurance time is the period of time that the participants can ride the bicycle with the load of 750 Kgm/ min (125 Watts).

Instruments
The instruments included a height measure, a stopwatch, a computer, a blood pressure monitor, interview records, a rhythm synthesizer (Yamaha, Japan), a digital scale (Transmate, Taiwan), a ergometric bicycle (Monark: model Ergo Medic 894 E, Sweden), the Monark Anaerobic Test Software (Sweden), and a ergo-metric bicycle (Monark Aerobic test: model Ergo Medic 828 E, Sweden).

Procedures
The study was conducted as follows:
1. Review of literature and gathering research setting information.

The information consists of primary and secondary information. The primary information was gathered by interviewing personnel from the board of administration, coaches, and staff of the sport sciences center of the Institute of Physical Education Bangkok. The information includes details of the athletes, instruments, research setting and research assistants. The secondary information reviews aerobic and anaerobic performance tests regarding procedures and criteria for interpretation and garlic extracts.

2. Contact with garlic extract and placebo manufacturers.

3. Development of records for the aerobic-anaerobic performance and endurance time, information sheets and consent forms for the athletes, medical records and testing schedules.

4. Submission of forms to supervisor and co-supervisor for review and contact with the graduate school regarding the research procedure.

5. Conduct of a pilot study in five male college students of the Institute of Physical Education Bangkok
in order to identify a load guideline for subjective exhaustion time.

6. Approval obtained for the research proposal from the ethics committee, and formal contacts made with the Institute of Physical Education, Bangkok, the garlic extract and placebo manufacturers. Potential participants were approached, using the information sheets and consent form and the research assistants to be trained.

7. Contacts were made with specialist doctors for the athletes’ medical check-up. The medical records were also used to select participants.

Data collection

1. Twenty college rugby football players of the Institute of Physical Education, Bangkok, were recruited. Then, they were divided into 4 groups, each group had five participants. The VO_{2}Max and medical check-up results were used for dividing criteria. Participants who had similar performance were assigned to the same group. There were four testing groups and two tests.

2. Research assistants were trained. All tests were conducted by the same researcher and research assistants at the same place with the same set of instruments.

3. Testing procedures were explained verbally. Information sheets were also provided.

4. The tests were conducted as follows:
 1. Test I:

 The participants in group A-D received placebo, 600, 900 and 1,200 mg of garlic extract, respectively. The research assistants and the participants did not know whether the tablets received were placebo or garlic extract. All participants registered at 6.00 am on the testing day. Their blood pressure was monitored. The tablets were taken after breakfast. After that they attended classes as usual for five hours. Then, they met again at 12.00 pm. The blood pressure, VO_{2}Max, endurance time and anaerobic performance were evaluated. Each group was tested twice a week for two consecutive weeks.

 2. Test II:

 Group B was selected for this test. The procedure was the same as Test I, except only blood pressure and VO_{2}Max were measured in the afternoon. The test was conducted four times at two day intervals.

5. After taking the tablets (placebo or garlic extract), the participants were interviewed regarding general information and the effects of the tablets.

6. The average blood pressure, VO_{2}Max, endurance time, and anaerobic performance were calculated.

7. Statistic analysis, discussion and conclusion were performed.

Results

The SPSS for Windows Version 12 (Statistical Package for the Social Science Personal Computer was used for data analysis.

1. Mean (X) and standard deviation (SD) were calculated for each of the variables and demographic data of the participants.

2. One-Way ANOVA was used to test the differences between the groups. When the differences were identified, the Honesty Significant Difference (HSD) was utilised to test the difference of each pair. The p value was set at .05.

3. The blood pressure difference between pre- and post-test was analysed using paired t-test, p = .05.
Data analysis revealed that Group C that received 900 mg of garlic extract had the highest average VO$_2$ Max (Table 1). VO$_2$ Max of the four groups were significantly different (Table 2). Thus, HSD was used to test the difference of each pair. The results showed significant difference (p = .05). The anaerobic performances including Peak Power Output (PP), Relative Peak Power Output (RPP), and percentage of Fatigue Index (% Fatigue Index) were not different (Table 3). The blood pressure was not different for the first week, but different in the second week (p = .05) (Table 4). Paired t-test revealed that blood pressure of group B (600 mg of garlic extract) was different (t = 4.356; p = 0.012), (t = 8.552; p = 0.001). Moreover, the systolic blood pressure of group C was also significantly different (t = 3.773; p = 0.020).

Table 1. VO2 Max. of the treatment groups.

<table>
<thead>
<tr>
<th>Test group</th>
<th>VO$_2$ Max (ml./kg./min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Placebo</td>
<td>51.59</td>
</tr>
<tr>
<td>600 mg.</td>
<td>51.61</td>
</tr>
<tr>
<td>900 mg.</td>
<td>53.20</td>
</tr>
<tr>
<td>1200 mg.</td>
<td>35.83</td>
</tr>
</tbody>
</table>

Table 2. Differences of VO$_2$ Max.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO$_2$ Max between group</td>
<td>1005.840</td>
<td>3</td>
<td>335.280</td>
<td>29.857</td>
<td>.000 *</td>
</tr>
<tr>
<td>Within group</td>
<td>179.673</td>
<td>16</td>
<td>11.230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1185.513</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance Time</td>
<td>116.186</td>
<td>3</td>
<td>38.729</td>
<td>.746</td>
<td>.540</td>
</tr>
<tr>
<td>Within group</td>
<td>830.886</td>
<td>16</td>
<td>51.930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>947.072</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05

Table 3. The Honesty Significant Difference (HSD) of VO$_2$ Max.

<table>
<thead>
<tr>
<th>Test Group</th>
<th>Placebo</th>
<th>600 mg</th>
<th>900 mg</th>
<th>1200 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>(X = 51.59)</td>
<td>(X = 51.61)</td>
<td>(X = 53.20)</td>
</tr>
<tr>
<td>Placebo</td>
<td>51.59</td>
<td>-</td>
<td>.000 *</td>
<td>.000 *</td>
</tr>
<tr>
<td>600 mg of garlic extract</td>
<td>51.61</td>
<td>-</td>
<td>.000 *</td>
<td>.000 *</td>
</tr>
<tr>
<td>900 mg of garlic extract</td>
<td>53.20</td>
<td>-</td>
<td>-</td>
<td>.000 *</td>
</tr>
<tr>
<td>1,200 mg of garlic extract</td>
<td>35.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*significant different at p = .05
Table 4. Comparison of the Peak Power Output (PP), Relative Peak Power Output (RPP), Anaerobic Capacity (AC), the Relative anaerobic Capacity (RAC) and percentage of Fatigue Index (% Fatigue Index).

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP between group</td>
<td>58,592.888</td>
<td>3</td>
<td>19,530.963</td>
<td>1.994</td>
<td>.156</td>
</tr>
<tr>
<td>Within group</td>
<td>156,750.500</td>
<td>16</td>
<td>9,796.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>215,343.400</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPP between group</td>
<td>5.167</td>
<td>3</td>
<td>1.722</td>
<td>.961</td>
<td>.435</td>
</tr>
<tr>
<td>Within group</td>
<td>28.674</td>
<td>16</td>
<td>1.792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33.841</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC between group</td>
<td>16,006.580</td>
<td>3</td>
<td>5,335.520</td>
<td>.987</td>
<td>.424</td>
</tr>
<tr>
<td>Within group</td>
<td>86,491.490</td>
<td>16</td>
<td>5,405.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102,498.100</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAC between group</td>
<td>5.411</td>
<td>3</td>
<td>1.804</td>
<td>3.249</td>
<td>.050</td>
</tr>
<tr>
<td>Within group</td>
<td>8.883</td>
<td>16</td>
<td>.555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14.294</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Fatigue Index</td>
<td>700.495</td>
<td>3</td>
<td>233.498</td>
<td>1.741</td>
<td>.199</td>
</tr>
<tr>
<td>Within group</td>
<td>2,145.996</td>
<td>16</td>
<td>134.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,846.491</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < .05

Table 5. Comparison of week 2 blood pressure (mm Hg) before and after receiving the tablets.

<table>
<thead>
<tr>
<th>Group</th>
<th>X</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo n = 5</td>
<td>Pre/ Post</td>
<td>Pre/ Post</td>
</tr>
<tr>
<td>Systolic</td>
<td>122.60/122.20</td>
<td>3.286/.837</td>
</tr>
<tr>
<td>Diastolic</td>
<td>82.00/80.60</td>
<td>2.121/1.140</td>
</tr>
<tr>
<td>600 mg. n = 5</td>
<td>Pre/ Post</td>
<td>Pre/ Post</td>
</tr>
<tr>
<td>Systolic</td>
<td>123.80/120.60</td>
<td>2.490/.894</td>
</tr>
<tr>
<td>Diastolic</td>
<td>84.60/81.40</td>
<td>1.517/.894</td>
</tr>
<tr>
<td>900 mg. n = 5</td>
<td>Pre/ Post</td>
<td>Pre/ Post</td>
</tr>
<tr>
<td>Systolic</td>
<td>122.60/120.40</td>
<td>1.817/.548</td>
</tr>
<tr>
<td>Diastolic</td>
<td>81.20/80.40</td>
<td>2.588/.548</td>
</tr>
<tr>
<td>1200 mg. n = 5</td>
<td>Pre/ Post</td>
<td>Pre/ Post</td>
</tr>
<tr>
<td>Systolic</td>
<td>128.40/126.40</td>
<td>7.603/6.731</td>
</tr>
<tr>
<td>Diastolic</td>
<td>78.40/75.60</td>
<td>5.814/3.130</td>
</tr>
</tbody>
</table>

* p < 0.05
Discussion

The results showed that the group that received 900 mg of garlic extract had the highest average VO$_2$ Max (53.20 mg/kg/min). This might be involved with anti-clotting properties of the garlic extract which improve blood circulation. The improvement of blood circulation would increase the oxygen carrying capacity. This is supported by Mader’s study (1990). The study indicated that garlic extracts have an impact on the blood vessels, blood circulation and plasma viscosity. This may enhance oxygen carrying capacity and muscle-fibers functions. This agrees with Inal’s study (1995) that examined the effects of 900 mg of garlic extract in 10 athletes. It has been found that the group using 900 mg of garlic extract had higher VO$_2$ Max than the placebo group. Moreover, Letcher et al. (1981) suggested that decreasing plasma viscosity improves oxygen carrying capacity to the muscles. In addition, Selenium enriched in garlic can prevent heart and vessels diseases. Therefore, it may improve motor functions. Furthermore, the athlete training routine may affect VO$_2$ Max. As the American Academy of Orthopaedic Surgeons (1991) indicated that training programs are the most important factor for increasing strength, power, and endurance. In this study, coaches indicated that the rugby football players undertake for 2-hour training sessions a week. The training programs are determined by the position of the players. For example, the forwards require strength, endurance and balance training. Thus, they perform weight-training, ball passing and ball drills and sprint training. The backs require speed, agility and flexibility. Therefore, their training is short distance running, fast-short distance running, avoiding obstructions and ball passing training. This suggests that training programs may have an effect on VO$_2$ Max. Regarding the endurance time, there was no statistical difference. Furthermore, the group that received 900 mg of garlic extract had the lowest endurance time (X = 11.81 min). Generally, there are many factors related to effectiveness of the muscle functions. Nutrients which are the energy source are one of the most important factors. Pratoom reports that when the energy sources, such as reduce muscle contraction and strength decreases. Forty percent of the participants reported that they did not have breakfast. Moreover, having three meals a day does not guarantee that the athletes have all essential nutrients. Furthermore, the participants might have insufficient water. Twenty-five percent reported that they did not drink water before training and 60% did not drink during training. Ratanawadee emphasized the importance of water to enhance cellular functions, especially biochemical reactions and metabolism. Water plays an important role in nutrient and oxygen transportation, reducing heat and blood circulation. Therefore, inadequate food and water may have an effect on the endurance time. The anaerobic performance was also not different. This might be because of inadequate nutrients. Moreover, the physique of rugby football players differs by their position. The different compositions and muscle sizes might affect the anaerobic performance. This agrees with Cooper et al. (1984) who reported that those who have large muscles can reach the peak power output before changing to use anaerobic metabolism. Regarding blood pressure, 600 mg and 900 mg of garlic extracts showed significant differences (both systolic and diastolic for the 600 mg and only systolic for the 900
mg groups). This may be because of scordinin in garlic extract which is also found in ginsengs. Scordinin’s properties are similar to male and female hormones which may facilitate bodily functions. Furthermore, garlic extracts also contain disulfide that can reduce cholesterol and blood pressure. These may reduce the athletes’ blood pressure.

Conclusion

\[\text{VO}_2 \text{ Max of the groups that received garlic extract was higher than the placebo group. The anaerobic performances (Peak Power Output (PP), Relative Peak Power Output (RPP), Anaerobic Capacity (AC), the Relative Anaerobic Capacity (RAC) and percentage of Fatigue Index (% Fatigue Index)) and endurance time were not different. However, 600 mg of garlic extract reduced both the systolic and diastolic blood pressures, while 900 mg of garlic extract reduced only the systolic blood pressure in the second week.} \]

Suggestions for future research

1. Should include aerobic performance evaluation using gas analyzer. The breath by breath record should be included to measure athletes’ physiological performances

2. Should include various performances tests such as static and dynamic muscle strength tests, cardiovascular tests, respiratory tests and maximum breathing capacity.

References

2. Stoll A, Seebeck E. Chemical investigations of allin, the specific principle of garlic. Adv Enzymol 1951;11: 377 - 400

4. ฝรั่งชีวิต ลักษณะผู้. กระเทียม สมุนไพรเสริมสุขภาพจากงานวิจัยล่าสุด. กลุ่มพัฒนา: รวมสรรพสิ่ง, 2542

11. Sajarat Sirirattakarn. พลังงานศรัทธาระดับตาราง. กรุงเทพฯ: ซีเอ็กซ์พิซรูเซสม์, 2546
13. ประทุม มงคลมิ่ง. บางคนงานทางสรีรวิทยาของการออกกำลังกายและการพลศึกษา. กรุงเทพฯ: บุรพาสารานุ, 2527
17. ชัยยานตรี รุ่นริ่ง. ระเบียบการ. ฉลาดบดินทร์ 2541 ม.ศ. - ธ.ศ.; 23(ฉบับที่ 1): 45 - 51