Cytotoxicity and apoptotic mechanisms of different solvent extracts from *Ipomoea pes-caprae* on human nasopharyngeal cells

Chantarawan Saengkhaea,*, Napaporn Uawongyartb, Sunantha Osirib

*aFaculty of Allied Health Sciences, Burapha University, Chonburi, 20131
bFaculty of Abhaibhubejhr Thai Traditional Medicine, Burapha University, Chonburi, 20131

Background: *Ipomoea pes-caprae* serves as a valuable medicinal plant with pharmacological activities including antioxidant, analgesic, anti-inflammatory, antispasmodic, and anticancer activities. Although some scientific literatures have demonstrated its anticancer activities, the exact mechanism has not been fully elucidated.

Objectives: To study the cytotoxicity and apoptotic mechanisms of different solvent extracts from *Ipomoea pes-caprae* on human nasopharyngeal (KB) cells.

Methods: The dried plant was macerated in hexane (Hex) or ethanol: water (EtOH). The supercritical fluid extraction process used carbon dioxide (SCO$_2$) as the extracting solvent. Cytotoxic activity was determined by MTT assay. The apoptotic mechanism and its effect on mitochondrial membrane potential was measured by DNA agarose gel electrophoresis, nuclear staining with DAPI, JC-1 mitochondria staining and caspase-3 activity analysis.

Results: EtOH extraction did not exhibit a cytotoxic effect on peripheral blood mononuclear or KB cells. The IC$_{50}$ values of Hex, SCO$_2$ extract and doxorubicin were found to be 200 ± 12.3, 70 ± 4.2 and 2.0 ± 0.08 \(\mu\)g/mL, respectively. Morphological changes including cell shrinkage, DNA fragmentation and condensation of chromosomes were observed. Further, Hex, SCO$_2$ extract induced loss of mitochondrial membrane potential and induction of caspase-3 activity.

Conclusions: The results strongly supported the ability of these extracts to induce the KB cell apoptosis through the mitochondrial and caspase-3 pathway. The presence of various bioactive compounds in the *Ipomoea pes-caprae* may be a valid strategy for chemoprevention and chemosensitization.

Keywords: *Ipomoea pes-caprae*, apoptosis, caspase-3, KB cells.
literature data confirm the traditional use of this plant toward dermatitis caused by venomous jellyfishes. Cytotoxic activity has shown that the hexane-soluble extract yielded six lipophilic glycosides, namely, pescaproside A, pescapreins I-IV and stoloniferin III that exhibited weak cytotoxicity against nasopharyngeal (KB), colon (HCT 15), squamous cell cervical (SQC-1 UISO) and ovarian (OVCAR) carcinomas. Pentasaccharide resin glycosides isolated from the aerial parts were not toxic against multidrug resistance in MCF-7/ADR cells but the combination of pentasaccharide (5 µg/mL) with doxorubicin increased the cytotoxicity of doxorubicin by 1.5-3.7-fold. In addition, the resin glycoside, murucoidin V, exerted a potentiation effect of pump inhibition of the P-gp transporter in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). These results suggest that resin glycosides could be used to overcome multidrug resistance for future cancer therapies.

The in vivo antitumor potential against mice melanoma (B16F10) cancer cells was found in following the order methanolic extract > aqueous extract > petroleum ether extract which may be attributed to the presence of alkaloids, flavonoids, tannins, terpenoids, and glycosides in the crude extract. These compounds with scaffold phytochemistry have a variety of therapeutic properties ranging from antioxidant, anti-inflammation, collagenase inhibitory, immune-stimulatory and anticancer activities. With Ipomoea pes-caprae being a promising candidate for anticancer drug development, research is much needed on the plant extracts that may yield many bio-active compounds with minimal toxicity. Consequently, the objective of this study was to investigate the cytotoxicity and apoptotic mechanism of the different solvent extracts from Ipomoea pes-caprae on human nasopharyngeal epidermoid carcinoma (KB cells) in vitro.

Materials and methods

Plant material and preparation of extracts

The aerial parts of Ipomoea pes-caprae were collected from the Bangsaen costal area in Chonburi Province, Thailand during January - April 2015. All plants were washed with running tap water, over-dried at 45°C for 48 h and subsequentlygrounded. In the maceration method, 500 g of the dried plant was macerated in 500 mL hexane (Hex) or ethanol: water (50:50, v/v) (EtOH) for 7 days and the solvents were removed via a rotary evaporator at 45°C. In the supercritical fluid extraction method, carbon dioxide (SCO2) was the supercritical fluid as the extracting solvent. The pressure and temperature were 74 bar and 31°C. All of the extract samples were dissolved in 0.5% EtOH.

Gas chromatography - mass spectrometry (GC-MS)

The gas chromatography–mass spectrometry (GC-MS) analyses were made in a FOCUS DSQ Single Quadrupole GC-MS (Thermo Electron Corporation, USA) in a ZB-5ms glass capillary column (Dimension: 30 m, ID: 0.25 mm, Film: 0.25 µm). The column temperature program was maintained from 60°C up to the end temperature of 220°C at the rate of 10°C/min. The sample (1 µL) was injected and the flow rate of the helium carrier gas was set to 1 mL/min in a splitless mode with a total run time of 30 min. The mass spectrometry detector was operated with a vacuum pressure of 60 mTorr, transfer line temperature of 275°C, ion trap temperature of 240°C and ionization energy of 70 eV. The chromatograms of the sample were identified by comparing their mass spectra with a spectral database of known components in the GC-MS library, National Institute Standard and Technology (NIST). The name and molecular weight of the compounds were determined and the percentage composition displayed the relative amount of each fragment from the compounds.

Human peripheral blood mononuclear cells (PBMC) preparations

PBMC were isolated from whole blood (20 mL) obtained from healthy human volunteers. This research project was approved by the Ethics Committee of Burapha University, according to the document number 84/2556. Blood samples were collected into heparinized tubes and processed by Ficoll-Hypaque gradient centrifugation. The gradient interface containing the mononuclear cell fraction was washed with PBS, counted in trypan blue, and resuspended in RPMI 1640 complete medium.

Human cancer cell line

KB cells, human carcinoma of nasopharynx cells, were provided from the National Center Institute (Bangkok, Thailand). They were grown in Dulbecco’s modified eagle medium (DMEM) containing 10% (v/v) heat-inactivated fetal bovine serum, and 1% penicillin/streptomycin. The cell lines were cultured routinely in a humidified atmosphere with 5% CO2,
95% air at 37°C. Experiments were performed when cells were cultured to exponential growth with a viability >95%, as determined by trypan blue exclusion.

Cell viability assay

Cell viability was measured by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Briefly, KB or PBMC cells were seeded on a 96-well plate (1x10^4 cells/well) for 24 h until they reached 70% of confluency. On the second day, different concentrations of test samples, EtOH (0.5%) and doxorubicin (Dox) were added to the wells for 48 h. Thereafter, 10 μL of MTT (5g/L) was added to each well for 4 h at 37°C and 5% CO₂. The medium was removed, and the purple formazan crystals were dissolved in 100 μL dimethyl sulfoxide (DMSO). The absorbance at 570 nm was read with a microplate reader (Cecil Bioquest 2000 Series). Results were expressed as a percentage of the control (100%), and the cytotoxicity was expressed as concentration of 50% of cytotoxicity (IC₅₀).

Agarose gel electrophoresis of fragmented DNA

The GF-1 tissue DNA extraction kit was used for DNA purification. At the end of incubation period, cells were washed with PBS, and the cell pellets were then lysed with digestion buffer containing proteinase K (400 μg/mL) for 10 min at 60°C, and subsequently with RNase A (10 μg/mL) for 10 min at 37°C. The DNA was precipitated by ice-cold absolute ethanol. High-purity genomic DNA has an absorbance ratio at 260/280 nm of between 1.7, and 1.9. DNA samples (20 ng) were electrophoretically separated at 125 V on 1% agarose gel containing SYBR Gold in Tris-borate/EDTA electrophoresis buffer (TBE). DNA was visualized under a transilluminator (Clare Chemical Research).

Nuclear staining by 4′,6-diamidino-2-phenylindole (DAPI)

KB cells were grown in 8-well slide chambers and later treated with test sample at IC₅₀ concentration for 48 h. For nuclear staining with DAPI, the glutaraldehyde (2.5%)-fixed cells were washed with PBS, and stained with a 5 μg/mL DAPI solution for 10 min. Then, the cells were washed twice with PBS, and mounted by placing a small drop of glycerol-PBS solution. The nuclear morphology was visualized and photographed by fluorescence microscopy (BX51TR, Olympus, Tokyo, Japan) at 100 × oil objectives with a DAPI filter. For each of triplicate samples, 200 nuclei were counted with at least 5 fields of view for each slide.

Mitochondrial membrane potential (ΔΨm) analysis

After treatment with IC₅₀ concentrations of test samples, both adherent and detached cells were collected and incubated with 5 μg/mL of 5,5′, 6,6′-tetrachloro-1,1′,3,3′ -tetrathyl benzimidazol-carbocyanine iodide (JC-1) at 37°C for 15 min. Cells then washed twice with PBS and ΔΨm was monitored by determining the relative amounts of dual wavelength emissions for both green (JC-1 monomers) versus red (JC-1 aggregates) using flow cytometry (Becton Dickinson, BD LSR II) under Argon-ion 488 nm laser excitation. Mitochondrial depolarization was determined by a decrease in the red/green fluorescence intensity using the BD FACSDiva Software.

Analysis of caspase-3 activity

The activities of caspase-3 were determined by a colorimetric assay kit, according to the manufacturer’s instructions. Cells were cultured in a 6-well plate and incubated with IC₅₀ concentrations of test samples for 48 h. The cell pellet was suspended in lysis buffer for 30 min on ice and supernatants were collected for the assay. The proteolytic reaction was performed in supernatant proteins (100 μg/sample) and caspase-3 substrate (DEVD-pNA) at 37°C in the dark for 2 h. Then, the formation of p-nitroanilide (pNA) was read at 405 nm using an ELISA reader. The data were represented as ‘fold of control’.

Statistical analysis

All results were presented as the mean values ± standard error of the mean (SEM) in at least 3 independent experiments. The significance of difference between groups was calculated using the Student’s t - test, and P < 0.05 were considered statistically significant.

Results

The Hex extract of *Ipomoea pes-caprae* had the highest yield (2.9%) (w/w), followed by EtOH (1.9%) and SCΟ₂ (1.3%). In GC-MS chromatogram analysis, the name, molecular weight, and structure of the phytochemical constituents with the NIST
of the phytochemical constituents with the NIST library were identified in Table 1. Eugenol was one of the chemical compounds that can be determined from *Ipomoea pes-caprae* in the GC-MS analysis from the time range of 11.08 - 11.10 min. The SCO\textsubscript{2} condition yielded the highest amount of eugenol (3.19\%) followed by Hex (2.2\%) and EtOH (0.5\%).

In vitro cytotoxicity was determined as the first step in screening for potential anticancer activity from *Ipomoea pes-caprae*. The EtOH, Hex and SCO\textsubscript{2} extracts exhibited weak cytotoxicity against PBMC and the viability of PBMC remained above 80 \% at a concentration of 1000 \(\mu\text{g/mL}\) (data not shown). The treatment of KB cells with EtOH extraction did not result in a significant cytotoxic effect. On the contrary, Hex, SCO\textsubscript{2} extract and Dox exhibited a marked growth inhibitory effect on KB cells in a dose-dependent manner with IC\textsubscript{50} (50\% inhibition concentration) of 200 ± 12.3, 70 ± 4.2 and 2.0 ± 0.08 \(\mu\text{g/mL}\), respectively (Figure 1). The morphology of KB-treated cells changed significantly into round, membrane blebbing and appearances of apoptotic cells; while the 0.5\% EtOH-treated control cells remained polygonal adherent cells.

The Hex and SCO\textsubscript{2}, but not EtOH extracts, induced small DNA fragments that moved through the gel faster than those of the control group. The longest pieces of DNA remained near the wells in the control and EtOH extract group (Figure 2). Assessment of nuclear morphology by fluorescence microscopy, showed the nuclei of KB cells treated with Hex and SCO\textsubscript{2} extracts displayed fragmentation of the nucleus compared to controlled nuclei that exhibited diffuse staining. In the control group (0.5\% EtOH), the quantitative estimation of normal cells was 100\%, whereas the nuclear fragmentation in KB cells treated with EtOH, Hex, SCO\textsubscript{2} and Dox were 9 ± 0.65, 61 ± 4.26, 65 ± 3.58, and 70 ± 8.66\%, respectively (Figure 3; DAPI). The morphological changes detected under the microscope showed the KB cell disintegrated into apoptotic bodies, and showed cell shrinkage, rounding, poor adherence, and membrane blebbing (Figure 3; Bright field).

Table 1. Compounds identified in the extract of *Ipomoea pes-caprae* in GC-MS.

<table>
<thead>
<tr>
<th>Retention time</th>
<th>Name of compound</th>
<th>Molecular weight</th>
<th>Molecular formula</th>
<th>Amount (% relative)</th>
<th>EtOH</th>
<th>Hex</th>
<th>SCO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.08-11.10</td>
<td>eugenol</td>
<td>164.20</td>
<td>C\textsubscript{10}H\textsubscript{10}O</td>
<td>0.50</td>
<td>2.22</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>11.85</td>
<td>alpha cubebene</td>
<td>204.357</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>14.38</td>
<td>6.36</td>
<td></td>
</tr>
<tr>
<td>12.17</td>
<td>isodolene</td>
<td>204.357</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>10.10</td>
<td>5.98</td>
<td></td>
</tr>
<tr>
<td>13.08</td>
<td>beta caryophyllene</td>
<td>204.36</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>4.11</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>13.37</td>
<td>aristole</td>
<td>204.357</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>0.45</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>14.10</td>
<td>azulene</td>
<td>128.17</td>
<td>C\textsubscript{10}H\textsubscript{8}</td>
<td>-</td>
<td>0.66</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>14.84</td>
<td>germacrene D</td>
<td>204.357</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>9.90</td>
<td>7.82</td>
<td></td>
</tr>
<tr>
<td>15.94-16.00</td>
<td>beta cadinene</td>
<td>204.351</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>11.88</td>
<td>8.89</td>
<td></td>
</tr>
<tr>
<td>17.25</td>
<td>gamma gurjunene</td>
<td>204.357</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>0.12</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>17.98</td>
<td>aromadrene</td>
<td>204.357</td>
<td>C\textsubscript{15}H\textsubscript{24}</td>
<td>-</td>
<td>0.13</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>20.51-20.54</td>
<td>alpha curcumene</td>
<td>202.341</td>
<td>C\textsubscript{15}H\textsubscript{22}</td>
<td>-</td>
<td>0.19</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>24.89</td>
<td>unknown</td>
<td>4.67</td>
<td>-</td>
<td>-</td>
<td>0.23</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>26.31</td>
<td>4-tetradecyne</td>
<td>194.362</td>
<td>C\textsubscript{14}H\textsubscript{26}</td>
<td>-</td>
<td>2.02</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>26.99</td>
<td>7-heptadecyne</td>
<td>236.436</td>
<td>C\textsubscript{17}H\textsubscript{32}</td>
<td>-</td>
<td>0.45</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27.43</td>
<td>unknown</td>
<td>-</td>
<td>-</td>
<td>0.71</td>
<td>27.52</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27.65</td>
<td>pentacosane</td>
<td>352.691</td>
<td>C\textsubscript{25}H\textsubscript{52}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27.85</td>
<td>pentatricontane</td>
<td>492.96</td>
<td>C\textsubscript{35}H\textsubscript{72}</td>
<td>-</td>
<td>7.98</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27.89</td>
<td>ethyl linoleate</td>
<td>308.506</td>
<td>C\textsubscript{20}H\textsubscript{36}O\textsubscript{2}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28.08</td>
<td>ethyl linoleolate</td>
<td>58.01</td>
<td>-</td>
<td>0.85</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28.40</td>
<td>unknown</td>
<td>1.91</td>
<td>3.59</td>
<td>22.97</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28.61</td>
<td>docosane</td>
<td>310.60</td>
<td>C\textsubscript{22}H\textsubscript{46}</td>
<td>-</td>
<td>0.73</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>29.22</td>
<td>eicosanoic acid</td>
<td>312.53</td>
<td>C\textsubscript{20}H\textsubscript{40}O\textsubscript{2}</td>
<td>-</td>
<td>20.52</td>
<td>7.07</td>
<td></td>
</tr>
<tr>
<td>29.60</td>
<td>methyl palmitate</td>
<td>270.457</td>
<td>C\textsubscript{17}H\textsubscript{34}O\textsubscript{2}</td>
<td>0.63</td>
<td>28.96</td>
<td>14.30</td>
<td></td>
</tr>
</tbody>
</table>
Cytotoxicity and apoptotic mechanisms of extracts *Ipomoea pes-caprae*

The $\Delta \Psi_{m}$ is a key indicator of cell apoptosis related to mitochondria-derived ATP. For monitoring changes in $\Delta \Psi_{m}$, the membrane-permeant JC-1 dye exhibits potential-dependent accumulation in mitochondria specified by a fluorescence emission shift from green (JC-1 monomers) to red (JC-1 aggregates). The loss of $\Delta \Psi_{m}$ has been regarded as a decrease in red and increase in green fluorescence intensity. The percentage of cells with reduced JC-1 red fluorescence followed by treatment with 0.5% EtOH, EtOH, Hex, SCO$_2$ and Dox was 97.2, 92.8, 86.4, 79.9, 73.4%, respectively. On the one hand, the percentage of cells with augmented JC-1 green fluorescence was 2.8, 7.2, 13.6, 20.1, 26.6%, respectively.

Representative histograms from 3 individual experiments are presented in Figure 4. Mitochondrial depolarization can be estimated by a decrease in the red-to-green fluorescence intensity ratio as compared to the 0.5% EtOH control. The observed difference was statistically significant ($P < 0.05$) between the control and the extract of *Ipomoea pes-caprae* (Hex & SCO$_2$).

Figure 1. Percent cell viability of KB cells after exposure to extract of *Ipomoea pes-caprae* and Dox for 48 h. Cell viability was determined by MTT assay. Each point is mean ± SEM of three experiments.

Figure 2. Agarose gel electrophoresis of DNA from *Ipomoea pes-caprae*-treated KB cells. Purified genomic DNA was analyzed by electrophoresis on 1.0% agarose gel, stained with SYBR Gold and visualized under ultraviolet. A photograph was representative of three independent experiments.
The relative caspase-3 activity significantly increased by 2.32 ± 0.32, 2.68 ± 0.25 and 3.33 ± 0.54 folds (P < 0.05), respectively, versus control. In the presence of caspase-3 inhibitor, the caspase-3 activity significantly decreased to 1.33 ± 0.1, 1.39 ± 0.45 and 1.83 ± 0.41 (P < 0.05), respectively, when compared with non-caspase-3 inhibitor group (Figure 5).
Cytotoxicity and apoptotic mechanisms of extracts *Ipomoea pes-caprae*

Figure 4. Mitochondrial membrane potential was measured by flow cytometry. KB cells were incubated with extract of *Ipomoea pes-caprae* and Dox for 48 h and stained with JC-1. The JC-1 fluorescence intensity was visualized using FACS analysis with two dimensional scatter-plots in channel green (J-monomers) versus red (J-aggregates) fluorescence. Experiments were performed in triplicate and one representative plot was shown.

Figure 5. Caspase-3 enzymatic activity in KB cells treated with the indicated concentrations. The control group was set to 1, and the values of other groups were reliable against it. Data were expressed as mean ± SEM of three determinations, *P* < 0.05 compared with control, **P** < 0.05 compared with non-caspase-3 inhibitor group.
Discussion

Ipomoea pes-caprae, is a valuable folk-medicinal beach plant distributed throughout tropical and subtropical areas. The present study which evaluated the anticancer properties of aerial parts of *Ipomoea pes-caprae* and their efforts were also made to provide new insights of the probable apoptotic mechanism. For general screening of bioactivity, different solvents (with different polarity) were used in the present study. The active compounds from EtOH, Hex and SCO2 extracts included the polar, non-polar and both substances, respectively. The highest yield was found with Hex and EtOH; whereas the minimum yield was found with SCO2 extract indicating that the *Ipomoea pes-caprae* contained mostly of lipophilic compounds such as waxes, chlorophyll, and organic compounds. In a literature review, *Ipomoea pes-caprae* contains a chemical diversity including naphthalenone, (-)-mellein, eugenol, 4-vinyl-guaiacol and resin glycosides depending on optimizing of maceration and extraction protocols. Eugenol was chosen as a chemical marker in this study by GC-MS because of its well-known anti-inflammatory and anticancer properties. At the same duration of extraction time, SCO2 extract has been identified as the highest eugenol extract compared with Hex and EtOH. Moreover, supercritical carbon dioxide extractions can be regarded as a suitable alternative for using a non-toxic solvent and thus providing better extracts of the natural compounds than conventional solvents.

The SCO2 extract showed moderate cytotoxic activity followed by Hex against the KB cell line without causing excessive damage to normal PBMC cells. These results did not meet the criteria according to the U.S. NCI plant screening program. The crude extract is generally considered to have in vitro cytotoxic activity if the IC50 value is less than 20 µg/mL. Thus, the combination of these extracts with an anticancer agent may be considered as potential possibilities for cancer treatments. Previous reports showed that the pentasaccharide resin glycosides isolated from *Ipomoea pes-caprae* were cytotoxic against multidrug resistance in MCF-7/ADR cells. In a combination of pentasaccharide with doxorubicin, the cytotoxicity of doxorubicin increased by 1.5-3.7-fold. Moreover, the traditional utilization by local people has proclaimed *Ipomoea pes-caprae* as safe, and the plant sources are easily available. Additionally, it can be assumed that multiple phytochemicals rather than a single compound may have contributed to the cytotoxic effects in KB cells. Further studies are still needed to fractionate the bioactive components and then to treat more cancer cell lines.

In order to understand the molecular mechanisms related to the observed cell death, a number of techniques investigated such parameters as DNA fragmentation on agarose gel electrophoresis, cleavage of nuclear DNA by DAPI staining, loss of ΔΨm by JC-1 staining and caspase-3 activity analysis. The nucleosomal DNA ladder in agarose gels was one of the biochemical hallmarks of apoptosis. Here, these results showed that the DNA fragmentation in a smear pattern was observed. In the *in vitro* study, cells have no macrophages to engulf apoptotic cells, so DNA fragmentation due to both apoptosis and necrosis was considered. The cells which exhibited late apoptosis or necrotic death produced random DNA fragmentation of multiple sizes after gel electrophoresis. Consistent with the results of genomic DNA electrophoresis, the observation by microscopy also demonstrated chromatin condensation and nuclear fragmentation of treated cells. Moreover, the losses of ΔΨm and caspase-3 activation were observed. The collapse of ΔΨm occurred through formation of pores in the mitochondrial membrane with release of cytochrome C, and proapoptotic proteins that activated caspase-3. Caspasas, a family of cysteine proteases, are the key effector molecules that lead to the induction of apoptosis. The executioner caspase-3 is the final pathway of apoptosis, which activates the endonuclease (caspase-activated DNase) in the process of DNA fragmentation and cleaves various intracellular targets, including cytoskeletal proteins. The role of the mitochondrial membrane potential and caspases-3 activation in *Ipomoea pes-caprae*-treated KB cells has not been evaluated before. These findings indicated that the Hex and SCO2 extract-induced apoptosis in KB cells, at least in part through the mitochondrial and caspase-3 pathway.

It has long been recognized that cancer is closely linked to inflammation. Thus, the presence of chronic inflammation appears to facilitate the initiation and progression of cancers by providing a proper microenvironment for the exponential growth of cancerous cells. Thus, there are numerous literatures approving of anti-inflammatory agents for increasing apoptosis and increasing sensitivity to other
chemotherapeutic agents. (20) A recent study by Yu BW, et al. demonstrated that *Ipomoea pes-caprae* induced synergistic cytotoxic effects *in vitro* when combined with doxorubicin making them potential candidates for decreasing the toxicity of conventional chemotherapeutic agents. (8) The presence of various bioactive compounds in the *Ipomoea pes-caprae* may be a valid strategy for chemoprevention and chemosensitization. In addition, new combinations will be able to warrant further in-depth investigations of each of the bioactive compounds present in *Ipomoea pes-caprae*.

Acknowledgments

This research work was supported by The National Research Council of Thailand (2014).

Conflict of interest

None of the authors has any potential conflict of interest to disclose.

References

