Surgical anatomy of the cystic artery

The arterial supply of gall bladders was studied in 120 Thai cadavers (between the year 1977-1983) to determine the anatomical features and variations in number, origin and course. This study was designed according to its surgical application and presented in a practical manner that surgeons could apply to their works.

There are 11 variations of cystic artery, the most common type is the single cystic artery which arises from right hepatic artery and passes posterior to the common hepatic duct (52.5%). The second most common type is also a single artery from right hepatic artery but crossing anterior to bile duct (28.34%). All variations are analysed in 4 manners :- number, origin, relation to cholecystohepatic triangle and common hepatic duct. Single cystic artery is found in 90% of all cases and the most common origin is right hepatic artery which comprises 89% of cases. In 65% of the instances, cystic artery passes posterior to common hepatic duct. This study significantly shows that 95% of all the cystic arteries pass through the cholecystohepatic triangle which is a most useful clinical knowledge as it is the surgical landmark for identifying the cystic artery.
ยอดลิทเตอร์แสง cystic เป็นสั้นสีส้มขื้นอย่างหนึ่งซึ่งคล้ายแพทย์จะต้องสนใจในขณะทำการผ่าตัดผู้ป่วยหรือบริเวณท้องน้ำดีและข้างต้น การลักษณะของยอดลิทเตอร์แสงเป็นผลทำให้เกิดมีลิทเตอร์แสงและผ่าตัด หรือเกิดมีลิทเตอร์แสงหัวส่งผ่านได้โดยเฉพาะอย่างยิ่งในการผ่าตัดซึ่งมีการอักเสบหรือมีพิษผลต่อบริเวณอุ้งนิ่ว ดังนั้นจะทำให้เกิดโรคภูมิคุ้มกันด้วยลิทเตอร์แสงแปลงไป

การผ่าตัดบริเวณดังกล่าวโดยขาดความเข้าใจของวิทยาศาสตร์พื้นฐาน หรือการผ่าตัดจุดลิทเตอร์แสง โดยไม่เห็นด้วยในการที่มีลิทเตอร์แสงจะเป็นผลให้เกิดอันตรายต่อการช่วยไปได้ เช่น

1. ยอดลิทเตอร์แสง hepatic หรือเลือดท้องสมองเกิดภาวะแทรกซ้อน เช่น ท้องน้ำดีบ หรือได้เป็นต้น

นอกจากนี้ยังพบว่า ยอดลิทเตอร์แสง cystic เป็นโครงสร้างใด้ที่มีความผิดปกติมากที่สุดแห่งจุดก้านเหลี่ยม หรือทางด้าน จากเหตุผลดังกล่าวยอดลิทเตอร์แสง หรือเลือดท้องสมองเป็นสิ่งที่น่าสนใจควรจุดก้านเหลี่ยมทางกายภาพ แนวที่สามารถนำมาประยุกต์ใช้ระหว่างการผ่าตัดจุดน้ำดี และบริเวณน้ำดีบ

ลักษณะทางกายภาพของยอดลิทเตอร์แสง(1,2)
(รูปที่ 1)

![Figure 1 Normal anatomy of cystic artery.](image-url)

โดยทั่วไปยอดลิทเตอร์แสง cystic มีเพียงส่วนเล็กเป็นเส้นเลือดเป็นเหมือนทางหลอดเลือดแดง right hepatic หลังจากแยกแยะเส้นเลือดเรียก ท้องม้าทางล้านขวางไปยังถุงน้ำดี โดยมักจะอยู่หลังต่อ common hepatic duct มีขนาดเล็กกว่าน้ำดีอย่าง 2-3 มิลลิเมตร ยอดลิทเตอร์แสง cystic จะให้ขนาดย่อ 2 แช่น คือ แช่น anterior และ posterior ความยาวของยอดลิทเตอร์แสง cystic ตั้งแต่จุดก้านเหลี่ยมจนถึง
ฝ่าแหนงที่แตกแยกอยู่นี้ไม่แน่นอน แต่ฝ่าแหนงที่ก่อนหน้านั้นมีความคล้ายกันในพื้นที่ระหว่าง cystic duct, common hepatic duct และขอบด้านล่าง (Inferior surface) ของตับ ซึ่งเรียกว่า cholecystohepatic triangle

ฝ่าแหนง anterior ของหลอดเลือดแดง cystic จะทะลุไปยัง peritoneal surface ของอุ้มน้ำมีในขณะที่แบ่ง posterior หรือ Deep branch จะทะลุเข้าไประหว่างส่วนและอุ้มน้ำตีบตรง Gall bladder fossa เลี้ยงส่วนในของอุ้มน้ำมี

หลอดเลือดแดง cystic อาจจะแยกแขนงจากหลอดเลือดแดง common hepatic หรือ left hepatic หรือ gastroduodenal ก็ได้ การแยกแขนงออกจากหลอดเลือดแดงขึ้น ๆ นอกจากหลอดเลือดแดง right hepatic มักจะมีทางเดินหรือความยืดหยุ่นกว่าระหว่างงดเคลื่อนไป ซึ่งจะเป็นปัญหาถ้าการผ่าตัดที่ทำให้เกิดเลือดออกหรือเกิดอันตรายต่อวิธีการต่าง ๆ ความผิดแปลงซึ่งมีมากน้อยแตกต่างกันไปในแต่ละรายงานซึ่งเคยมีผู้ศึกษาไว้

ในการระหว่างการผ่าตัดอุ้มน้ำมีและบริเวณโดยรอบของหลอดเลือดแดง cystic ในสัตว์มีขนาดใหญ่และเล็กตามต่าง ๆ กำหนดความสัมพันธ์ของหลอดเลือดแดง common hepatic หรือ cholecystohepatic หรืออุ้มน้ำตีบตรง Gall bladder fossa

วัสดุและวิธีการ

รายงานเหล่านี้เป็นการศึกษาสัตว์ชนิดทางกายวิภาคของหลอดเลือดแดง cystic จากพื้นที่ของจำนวน 120 ราย ในระยะเวลา 6 ปี ตั้งแต่ปี พ.ศ. 2520-2526 โดยชักแหล่งหลอดเลือดแดง cystic แล้วรับจัดระเบียบจากที่ได้มีการดูแลช่วยในภาวะการศึกษาไว้ต่างหน้า หลังจากนั้นจึงนำมามาทำการวิเคราะห์รวมทั้งเปรียบเทียบผลที่รายงานจากต่างประเทศที่เคยมีผู้ศึกษาไว้แล้ว

ผลการศึกษา

จากการศึกษาพบลักษณะของหลอดเลือดแดง cystic ที่สัตว์จำนวน 11 แบบ แสดงไว้ดังรูปที่ 2.1 แต่รูปที่ 2.11 ตามลักษณะความที่พบดังนี้
Figure 2 (2.1-2.11) Variations of cystic artery. RHA = right hepatic artery, LHA = Left hepatic artery, CHD = common hepatic duct, GDA = gastroduodenal artery, SMA = superior mesenteric artery, CHA = common hepatic artery, Acc RHA = accessory right hepatic artery
Surgical anatomy of the cystic artery

1. แบบปกติที่กล่าวแล้วยังคงตามกาย
วิภาค ได้แก่ หลอดเลือดแดง สายกับส่วน
เดียวกันในหลอดเลือดแดง Right hepatic
และอยู่หูหลังคือ common hepatic duct พบ
จำนวน 63 ราย จาก 120 ราย คิดเป็นร้อยละ 52.5
(รูปที่ 2.1)

2. หลอดเลือดแดง cystic เส้นเล็กมาก
แยกจากหลอดเลือดแดง Right hepatic แล้วออก
มาจากหัวคือ Common hepatic duct พบทั้งสิ้น
34 ราย หรือร้อยละ 28.34 (รูปที่ 2.2)

3. หลอดเลือดแดง Cystic ที่มีจำนวน 2
เส้น แต่แตกแยกมาจากหลอดเลือดแดง Right
hepatic ที่ขึ้นเหนือพบของถดไป คือ 10 ราย หรือ
ร้อยละ 8.34 (รูปที่ 2.7)

4. หลอดเลือดแดง Cystic เส้นเล็กที่แตก
แยกมาจากหลอดเลือดแดง Gastroduodenal
พบได้ 6 ราย คิดเป็นร้อยละ 5 (รูปที่ 2.3)

สำนักอีก 7 แบบ เป็นชนิดที่มีหลอดเลือดแดง
Cystic เส้นเล็กข้อมูล 3 แบบ โดยแยกแยะจากหลอด
เลือดแดง Superior mesenteric (รูปที่ 2.4) จาก
หลอดเลือดแดง Left hepatic (รูปที่ 2.5) และ
จากหลอดเลือดแดง Common hepatic (รูปที่
2.6) กับชนิดที่มีหลอดเลือดแดง cystic คู่ (Dou-
ble cystic artery) ถึง 3 แบบ ซึ่งหลอดเลือด
แดง cystic เส้นหนึ่งแตกแยกมาจากหลอดเลือด
แดง Right hepatic ทั้ง 3 แบบ แต่ถึงส่วนหนึ่ง
แยกแยะมาจากหลอดเลือดแดง Common hep-
atic’ (รูปที่ 2.6) จากหลอดเลือดแดง Left hep-
atic (รูปที่ 2.9) และหลอดเลือดแดง Accessory
right hepatic (รูปที่ 2.10) แบบสุดท้ายนั้นจาก
การศึกษาไม่พบหลอดเลือดแดง Cystic (รูปที่
2.11) ทั้ง 7 แบบต่างกันมากนี้มีจำนวนเพียงแบบละ
1 ราย คิดเป็นร้อยละ 0.83

การวิเคราะห์และผลการวิเคราะห์

จากผลการศึกษานี้ ผู้รายงานเห็นว่าอาจไม่
สามารถนำไปใช้ประโยชน์ได้อย่างเต็มที่ได้ดังกล่าว
แล้วจึงได้ทำการวิเคราะห์ที่สังเกตทางกายวิภาค
ที่สัมพันธ์กับการประยุกต์ใช้ทางคลินิกตามความ
สัตต์ในนี้ คือ

1. จำนวนของหลอดเลือดแดง cystic
2. จุดกำเนิด (origin) ของหลอดเลือดแดง
cystic

3. ความสัมพันธ์กับ Cholecystohepa-
tic Triangle

4. ความสัมพันธ์ของหลอดเลือดแดง cystic
กับ Common bile duct หรือ Common hep-
atic duct

1. จำนวนของหลอดเลือด cystic

จากศัพท์ไทย 120 ราย ที่ได้ศึกษาพบว่า
106 รายมีหลอดเลือดแดง cystic เพียงเส้นเดียว
คิดเป็นร้อยละ 88.33 อีก 13 รายมีหลอดเลือด
dด 2 เส้น คือเป็นร้อยละ 10.83 และ
1 ราย ไม่มีหลอดเลือดแดง cystic เลย มีเพียง
แยกแยะของหลอดเลือดจากด้านมาถึงล่างน้ำสีจากส่วน
ที่ติดกับกันใน Gall bladder fossa เท่านั้น

เรียบเพียงกับรายงานจากต่างประเทศดัง
ตารางที่ 1
2. จุดกำเนิด (Origin) ของหลอดเลือดแดง Cystic

หลอดเลือดแดง Cystic แตกแขนงมาจากหลอดเลือดเดี่ยว 6 เส้น คือ หลอดเลือดแดง Right hepatic, Accessory right hepatic, Gastro-duodenal, Left hepatic, Common hepatic และ Superior mesenteric คิดเป็นร้อยละ 89.17, 0.83, 5.0, 1.67, 1.67 และ 0.83 ตามลำดับ โดยแบ่งได้เป็น 2 กลุ่มคือ

2.1 กลุ่มหลอดเลือดแดง Cystic เดี่ยว (Single cystic artery) พบได้ในจำนวน 106 ราย หรือร้อยละ 96.60 มาจากหลอดเลือดแดง Gastro-duodental 6 ราย หรือร้อยละ 5.66 มาจากหลอดเลือดแดง Left hepatic, Common hepatic, Superior mesenteric อย่างละ 1 ราย หรือร้อยละ 0.94

2.2 กลุ่มที่มีหลอดเลือดแดง Cystic คู่ (Double cystic artery) 13 ราย พบในกลุ่มนี้หลอดเลือดแดง Cystic เส้นหนึ่งแตกแขนงมาจากหลอดเลือดแดง Right hepatic เสมอ ส่วนอีกเส้นหนึ่ง 10 รายจาก 13 ราย (ร้อยละ 76.92 ของกลุ่มนี้) มาจากหลอดเลือดแดง Right hepatic เฉพาะ กลุ่มนี้ ไม่มีหลอดเลือดแดง cystic เส้นเดียวกัน ในขณะที่หลอดเลือดแดง Right hepatic เซ้นเดียวกัน ในขณะที่หลอดเลือดแดง Cystic อีกเส้นเดียวกันมาจากหลอดเลือดแดง Accessory Right hepatic, Left hepatic และ Common hepatic อย่างละ 1 ราย หรือร้อยละ 7.69 ของกลุ่มนี้

ในการศึกษาที่ไม่พบว่าหลอดเลือดแดง cystic แตกแขนงมาจาก Celiac axis หรือ gastroepiploic หรือ aorta หรือ Superior Pancreatico-duodenal ตามที่เคยมีการรายงานไว้(3,5) ผลการวิเคราะห์สุรุปได้ผลตามที่ 2
Table 2 Origin of cystic artery compare to other studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin of cystic A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rt. Hepatic A.</td>
<td>97 Single A.</td>
<td>10 Double A.</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>(89.17%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessory Rt. hepatic A.</td>
<td>–</td>
<td>1 Double A.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastroduodenal A.</td>
<td>6 Single A.</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(5.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lt. Hepatic A.</td>
<td>1 Single A.</td>
<td>1 Double A.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(1.67%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common hepatic A.</td>
<td>1 Single A.</td>
<td>1 Double A.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(1.67%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior mesenteric A.</td>
<td>1 Single A.</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0.83%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

3. 蚶核脉癟.getNext Cholecystohepatic Triangle
Calot คือและปัญหาการเรียกเป็นผู้บรรยายถูก
ที่สัญลักษณ์ที่กล่าวว่าและความสัมพันธ์ระหว่างท่อ
น้ำดี และหลอดเลือดบริเวณนี้ โดยเน้นถึงบริเวณ
ที่มี Cystic duct, Common hepatic duct
และหลอดเลือดแดง ได้ come มาบรรจุกัน ฉันเป็น
บริเวณที่ต้องระมัดระวังในการผ่าตัดซึ่งเรียกว่า
"Calot’s Triangle"(6) (ดูรูปที่ 3 A)

Figure 3 A. Calot’s Triangle (Stripped area).
B. Cholecystohepatic triangle (Stripped area).
ส่วน Cholecystohepatic Triangle เป็นบริเวณที่ตัดแปลงมาจาก Calot’s Triangle โดยมีขอบเขตเป็น Common hepatic duct, cystic duct และขอบผิวต่างระหว่างคู่เป็นบริเวณที่สั้นสุดที่ส่วนมากใช้เป็นจุดก้าหนวด (landmark)ในการตัดผนังต่อมเลือดด่าง cystic ซึ่งมักอยู่ในบริเวณสามเหลี่ยมนี้ (รูปที่ 3B)

ได้ศึกษาความสัมพันธ์ระหว่างจุดก้าเนิดของหลอดเลือดด่าง Cystic กับ Cholecysto-hepatic Triangle และความสัมพันธ์ระหว่างแนวทางดิน (course) ของหลอดเลือดด่าง cystic กับสามเหลี่ยมนี้ และพบว่าจุดก้าเนิดของหลอดเลือดด่าง cystic (ทั้ง single และ double A.) อยู่ภายในสามเหลี่ยมร้อยละ 59.17 อยู่นอกสามเหลี่ยมร้อยละ 36.67 และจุดก้าเนิดของส่วนหนึ่งอยู่ในกับจุดก้าเนิดของอีกส่วนหนึ่งอยู่นอกสามเหลี่ยมร้อยละ 4.17 เทียบกับรายงานจากต่างประเทศดังตารางที่ 3.

<table>
<thead>
<tr>
<th>Reports</th>
<th>Relation of origin to cholecysto-hepatic</th>
<th>origin within △</th>
<th>origin outside △</th>
<th>one origin within another origin outside △</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Report (1985) : total</td>
<td>△</td>
<td>71 (59.17%)</td>
<td>44 (36.67%)</td>
<td>5 (4.17%)</td>
</tr>
<tr>
<td>- single A. (106 cases)</td>
<td>△</td>
<td>63</td>
<td>43</td>
<td>-</td>
</tr>
<tr>
<td>- Double A. (13 cases)</td>
<td>△</td>
<td>8 (both in)</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>- absent cystic A (1 case)</td>
<td>△</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Michels (1966)(4)</td>
<td>△</td>
<td>76%</td>
<td>24%</td>
<td>-</td>
</tr>
<tr>
<td>- single A. (150 cases)</td>
<td>△</td>
<td>58%</td>
<td>38%</td>
<td>4%</td>
</tr>
<tr>
<td>- double A (50 cases)</td>
<td>△</td>
<td>74%</td>
<td>22%</td>
<td>4%</td>
</tr>
</tbody>
</table>

และพบว่าร้อยละ 94.17 ของหลอดเลือดด่าง cystic ทั้งแบบ Single และ Double มีแนวทางเดินผ่านสามเหลี่ยมนี้ และร้อยละ 0.83 เล่นหนึ่งผ่านสามเหลี่ยมนี้ ส่วนอีกส่วนหนึ่งไม่ผ่าน นอกจากนั้นพบว่า มีเพียงร้อยละ 5 ที่หลอดเลือดด่าง Cystic ไม่ผ่านสามเหลี่ยมนี้ เทียบกับรายงานจากต่างประเทศในตารางที่ 4.
4. ความสัมพันธ์ของหลอดเลือดแดง Cystic กับ Common bile duct หรือ Common hepatic duct พบว่าร้อยละ 64.17 ของหลอดเลือดแดง Cystic ผ่านไปด้านหลังท่อน้ำดี ขณะที่ร้อยละ 33.13 ผ่านมาด้านหน้าท่อน้ำดี และร้อยละ 1.67 มีหลอดเลือดแดง Cystic เส้นหนึ่งผ่านมาทางด้านหน้า ส่วนอีกเส้นผ่านไปสิ้นต่อ common bile duct หรือ common hepatic duct เป็นที่น่าสังเกตว่า จุดกำเนิด หรือ origin ของหลอดเลือดแดง Cystic มีผิดอย่างมากต่อความสัมพันธ์นี้ โดยพบที่ผ่านมาทางด้านหน้ามักพบว่ามีจุดกำเนิดจากหลอดเลือดอัน ซึ่งไม่ใช่หลอดเลือดแดง Right hepatic ตั้งตรงที่ 5

Table 4 Relation of course of cystic artery to cholecystohepatic triangle

<table>
<thead>
<tr>
<th>Reports</th>
<th>Course through</th>
<th>Course not in</th>
<th>one through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>△</td>
<td>△</td>
<td>one outside</td>
</tr>
<tr>
<td>This report: total 120 cases</td>
<td>113 (94.17%)</td>
<td>6 (5.0%)</td>
<td>1 (0.83%)</td>
</tr>
<tr>
<td>Single A. (106 cases)</td>
<td>101</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Double A. (13 cases)</td>
<td>12 (both)</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Absent A. (1 case)</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Michels (1966)(^4)</td>
<td>94%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Mooseman (1975)(^5)</td>
<td>96%</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Relation of cystic artery to common bile duct or Common hepatic duct.

<table>
<thead>
<tr>
<th>Reports</th>
<th>A. pass posterior to bile duct</th>
<th>A. pass anterior to bile duct</th>
<th>one pass posteriorly one pass anteriorly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>This report: total 120 cases</td>
<td>77 (64.17%)</td>
<td>40 (33.33%)</td>
<td>2 (1.67%)</td>
</tr>
<tr>
<td>Single A. (106 cases)</td>
<td>66</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Double A. (13 cases)</td>
<td>11</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Absent A. (1 case)</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Michels(^4,6)</td>
<td>75%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Mooseman(^5)</td>
<td>78%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Whitsell(^7)</td>
<td>84%</td>
<td>16%</td>
<td></td>
</tr>
</tbody>
</table>
วิจารณ์และสรุป

รายงานนี้ได้เสนอถึงชุดอาการของหลอดเลือดต่ําคistic ที่พบในเพศไทยจำนวน 120 ราย ซึ่งมีความสัมพันธ์ได้มากคํ้าแกกันถึง 11 แบบ คล้ายคลึงกับการรายงานอื่น ๆ จากต่างประเทศ (แม้ว่าจะพบความสัมพันธ์น้อยกว่า) ทำให้ดูเหมือนว่าจะไม่สามารถใช้สักชุดทางกายวิภาคเป็นหลักช่วยในการผ่าตัดได้เลย แต่ถ้าพิจารณาถึงในแต่ละจุดจะเห็นได้ว่า ความผันแปรในแต่ละหัวข้อมีไม่มากคือ ร้อยละ 88 มีหลอดเส้นคistic เส้นเล็ก ๆ จุดกันนั้นร้อยละ 89 มาจากหลอดเส้นคistic Right hepatic ที่เห็นมากจากหลอดเส้นอีกอัน ๆ 5 เส้น จุดกันนั้นอยู่ภายในลำซี่ Cholecystohepatic ประมาณร้อยละ 60 หลอดเส้นคistic ผ่านตามเหลี่ยมที่อันร้อยละ 95 ประมาณร้อยละ 65 ผ่านด้านหลังท่อน้ำ

คำถามที่ในนี้ใช้ระหว่างกันคิดจะมีประโยชน์ ไม่น้อย และแบบต่าง ๆ ที่พบ 11 แบบนั้น แบบที่
ถ้า ซึ่งรวมกันเป็นประมาณร้อยละ 90 ซึ่งใช้เป็นหลักเห็นดับในการผ่าตัดหลอดเส้นคistic ระหว่าง
ผ่าตัดได้ การระบุถึงจำนวนของหลอดเส้นคistic ซ่วนเลือดคิต occured ในผู้พิการที่มีสิ่งปราม
ร้อยละ 10 ที่อาจมีหลอดเส้นคিসติคมาก
กว่า 1 เส้น โดยเฉพาะถ้าพบที่หลอดเส้นคิน
คิดที่สามารถให้ครั้งแรกไม่ใช่แขนงของ
หลอดเส้นคิต Right hepatic

Cholecystohepatic Triangle อ้างใช้เป็น
จุดต้านหนังหลอดเส้นคิตที่มีอย่างดีเพราะ
ที่จากรายงานนี้ หรือรายงานอื่น ๆ ประมาณร้อยละ
95 หลอดเส้นคีย์อยู่ในสามเหลี่ยมนี้ อย่างไรก็ตาม
อายุมีอันดับหลักกว่า ต้องอาศัยโครงสร้าง 3 อย่าง
cito cystic duct, common hepatic duct และ
หลอดเส้นคิต cistic ใส่ได้ที่หมดก่อนที่จะมุ่ง
หรือตัดโครงสร้างโดยตรงส่วนหนึ่ง บริเวณใต้ดับ
ที่มีโครงสร้างที่สําคัญหลายอย่างอยู่ใกลํ ๆ กัน
ข้อเสียที่สามารถตามรูปทางกายวิภาคคังกล่าว
ไว้ใช้ประโยชน์ระหว่างผ่าตัดได้เป็นอย่างดี

กิตติกรรมประกาศ

ผู้รายงานขอขอบพระคุณ ศาสตราภิช)])
แพทย์ บุญรักษ์ ภูญจน์โยคิน อดีตหัวหน้าภาค
วิชาภูญจคากล้า และอาจารย์ในภาคภูญ
วิชาที่ได้กุมขมวนเหลี่ยมวิวัฒน์ในการรักษาและ
และทางหลอดเส้นคิต Cistic ในเขต ขอขอบ
พระคุณ รองศาสตราภิช)])
แพทย์ บรัพทรง
รัชชชิต และอาจารย์สายแพทย์ประพันธ์ กิตติสัน
ที่กุมรุ้ังให้ตามปราการศึกษาและรายงาน อาจารย์
สายแพทย์พันธ์พงก์ นวัตจารุธุ์ ที่ช่วยเยี่ยมภาพ
ประกอบ และทายาทคือของอุทิตคุณความสืบหรือ
ประโยชน์ที่ทุกทานให้บวกจากรายงานนี้แล้ว “ผู้อุทิต
ร่างกาย” ให้ผู้รายงานได้แสดงความรู้สึกเสมอ
อน ที่นี้

1216 ลุมพินี จิตมณฑล และคณะ จุฬาลงกรณ์มหาวิทยาลัย

7. Michels NA. The hepatic, cystic and retroduodenal arteries and their relations to the biliary ducts. Ann Surg 1951 Apr; 133(4) : 503-524