
Whole blood samples obtained from 12 healthy subjects were mixed with 3 different anticoagulants. Eleven adiquots were stored in a refrigerator at the temperature of 4° Celsius. Daily examinations of the hematologic parameters by a Coulter® model ZF and coulter® haemoglobinometer showed no change for 6 days in acid citrate dextrose (ACD) and citrate phosphate dextrose (CPD), but 5 days in ethylenediamine tetra acetate (EDTA). These parameters were red blood-cell count, mean corpuscular volume, haemoglobin (Hb), white cell count and hematocrit (Hct). Also hematocrit values determined by the microhematocrit method (spun Hct) was stable for 6 days. Moreover, the Hb and Hct in ACD and CPD stored blood were unchanged for 8 days.
การวัดคุณภาพของสารตรวจทางโลหิตวิทยา
ในห้องปฏิบัติการเป็นสิ่งจำเป็นเพื่อแสดงความคลาด
เคลื่อนและเพิ่มความเชื่อมั่นให้ของผลการวิเคราะ
ซึ่งแสดงถึงประสิทธิภาพทางปฏิบัติงานของมัก
วิเคราะ และเป็นประโยชน์ในการวัดคุณภาพ
ผู้ป่วย เนื่องจากปริมาณสารตรวจทางห้องปฏิบัติ
การเพิ่มขึ้น จึงได้มีการพัฒนาประสิทธิภาพของ
เทคนิคโดยการใช้เครื่องมืออัตโนมัติทำส่วนตัว
ระบบอิเล็กทรอนิก ซึ่งใช้วัดค่าทางโลหิตวิทยา
หลายอย่างได้ในเวลาเดียว ขณะ เครื่องอันเนกประสงค์
Coulter counter® model ZF ใช้วัดจำแนก
เม็ดเลือดแดง (RBC) ปริมาณเม็ดเลือดแดงเฉลี่ย
(mean corpuscular volume or MCV) ปริมาตร
เม็ดเลือดแดงอัตราหนึ่ง (hematocrit or Hct) ได้
พร้อมกัน นอกจากนี้ยังใช้วัดจำแนกเม็ดโลหิตขาว
(WBC) ด้วย ทำให้เราทราบว่าข้อมูลการทำงาน
ของเครื่องมี ซึ่งทำว่า ด้วยระบบอิเล็กทรอนิก
ได้โดยมีระบบการประกันคุณภาพ (quality assurance)
ที่ดีและกระทาอย่างต่อเนื่อง วัตถุประสงค์คุณภาพ
(quality control materials) นั้นผลิตจากต่าง
ประเทศ มีอายุการใช้งาน (expiry date) มี
ราคาสูง จึงเป็นข้อจำกัดสำหรับการนำมาใช้ในงาน
ประกันคุณภาพทางโลหิตวิทยาอย่างต่อเนื่องสำหรับ
ห้องปฏิบัติการส่วนมากในประเทศไทย การนำตัว
อย่างเลือดจากคนสุขภาพปกติและผู้ป่วยมีไข่เพียง
การควบคุมคุณภาพ(1,2,3) จึงเป็นสิ่งควรพิจารณา
มีรายงานการศึกษาจากต่างประเทศ กล่าวคือทาง
โลหิตวิทยาที่เปรียบเทียบไข่ด้วยสารป้องกันการแข็ง
ตัวของโลหิตที่ข้อมูลเกี่ยวกับ 4 เซลล์ชิ้น นา 1 วัน(2)
และ 5 วัน(3) ไม่มีการเปลี่ยนแปลง parameters
เหล่านี้ ได้แก่ WBC, RBC, Hb, Hct, MCV,
mean corpuscular hemoglobin (MCH) และ
mean corpuscular hemoglobin concentration
(MCHC) สำหรับในประเทศไทยอย่างไรไม่มีรายงาน
แสดงข้อมูลเป็นหลักฐานในสารวัตรวิชาการ การ
ศึกษารันในมีข้อดีประสิทธิ์ที่จะศึกษาความคงที่
ของทางโลหิตวิทยาของเลือดที่เก็บรักษาไว้ระหว่าง
10 วัน ที่อุณหภูมิ 4 องศาเซลเซียส โดยใช้สารป้องกัน
การแข็งตัวของโลหิต 3 ชนิด คือ acid-citrate--
dextrose (ACD), citrate-phosphate-dextrose
(CPD) และ Ethylenediamine tetra acetate
(EDTA)

วัสดุและวิธีการ

1. เก็บตัวอย่างเลือดจากผู้มีสุขภาพปกติ โดย
ได้ทำการตรวจฟิล์มเลือดอัตโนมัติ ดูจุดกระจายเม็ด
เลือดต่ำกว่าจุดตรวจมาตรฐาน จำนวน 12 ตัวอย่าง
แต่ละตัวอย่างแบ่งเป็น 3 ส่วน แต่ละส่วนในสาร
ป้องกันการแข็งตัวของโลหิตดังนี้ ACD, CPD และ
EDTA

ซึ่งส่วนประกอบสารเคมี และสัดส่วนของ
เลือดมีดังนี้

1.1 น้ำยา acid-citrate-dextrose (ACD)
ประกอบด้วย trisodium citrate 2.2 กรัม citric acid 1.8 กรัม dextrose 2.45 กรัม เทิรมน้ำดื่มให้
มีปริมาตรครบ 100 มล. ใช้สัดส่วนของเลือดต่อ
ACD = 100 : 15 สำหรับโดยปริมาตร (vol/vol)

1.2 น้ำยา citrate-phosphate-dextrose
(CPD) ประกอบด้วย anhydrous citric acid
0.327 กรัม anhydrous sodium citrate 2.64
กรัม anhydrous dextrose 2.32 กรัม monobasic
sodium biphosphate 0.22 กรั้ม เทิรมน้ำดื่ม
มีปริมาตรครบ 100 มล. สัดส่วนของเลือดต่อ
CPD = 100 : 14 สำหรับโดยปริมาตร (vol/vol)

1.3 น้ำยา ethylenediamine tetra acetate
(EDTA) ความเข้มข้น 1 per cent สัดส่วนของ
เลือด 10 มล. ค่อน้ำยา EDTA 1 มล. ซึ่งได้ตอบความร้อนให้ตัวเลขแห้งกลางการใช้

2. แปรส่วนเลือดที่ผสมกับสารป้องกันการแข็งตัวของโลหิตทั้ง 3 ชนิด ออกเป็น วาล์วเล็ก 11 วาล์ว แต่ละวาล์วเก็บในฉนวนแก้วเปียดกลิ่นจุดเก็บข้าว
ขวดแรกใช้ตรวจจับทางโลหิตรีเทียริยาเป็นค่าตั้งต้น (base line) โดยวิเคราะห์ข้าว 5 ครั้ง (replicates) และหาค่าเฉลี่ย

2.1 ขวดที่เหลือทั้งหมดเก็บไว้ในตู้เย็นที่ อุณหภูมิ 4° เซลเซียส และนำมาจากตรวจทำทาง
โลหิตรีเทียริยาและ 1 ขวด อย่างต่ำเกี่ยวจนครบ 10
วัน โดยกล่องตรวจเนื้อเวลาเลือดตั้งใจให้เร็วทุกาม ท้อง 15 นาที (ห้องปรับอากาศมีอุณหภูมิ 25 เซลเซียส) และผสมให้มีการกระจายตัวของเซลล์เลือด
เลือดเหลือแต่ละขวดเก็บข้าว 2 ครั้ง (duplicate)
และหาค่าเฉลี่ย parameters ที่ตรวจได้แก่ RBC, MCV, Hct, WBC และ Hb

3. เครื่องมือ

3.1 เครื่อง Coulter counter® model ZF ของบริษัท Coulter Electronics Limited,
Hertfordshire, England เป็นเครื่องมีอัตโนมัติใช้สำหรับวัดค่า RBC, MCV, Hct ได้พร้อมกัน
ค่า WBC นั้นวัดแยกโดยเครื่องมีนี้ ค่า Hb วัดโดย
coulter® haemoglobinometer ขั้นตอนการตรวจ
ทางโลหิตรีเทียริยาเหล่านี้ปฏิบัติตามหนังสือคู่มือ(4)
ด้วยวิธีการโดย้ยถึง

3.1.1 เรียงลำดับตัวอย่างในน้ำยา Isoton® ด้วยอัตราส่วน 1 : 50,000 นำไปทำค่า
RBC, MCV และ Hct ด้วยเครื่อง จะอ่านค่า
ได้พร้อมกันทั้ง 3 parameters

3.1.2 เรียงลำดับตัวอย่างในน้ำยา Isoton® ด้วยอัตราส่วน 1 : 50 และเติม Zapoglobin® 1 หลอด ซึ่งเป็นน้ำยาที่มีฤทธิ์ในการทำให้
เม็ดเลือดแดงแตก ฉลามส่วน stroma และเปลี่ยน Hb เป็นสาร cyanmethemoglobin นำไปทำค่า
WBC จากเครื่องมีดีเทียบกับ 3.1.1

3.1.3 นำน้ำยาที่เตรียมในข้อ 3.1.2 นำไปวัดค่า Hb โดยเครื่องมี Coulter® hemoglobinometer

3.2 เครื่อง Microhematocrit ใช้สำหรับ
การวัดค่า spun hematocrit (spun Hct) ซึ่งวัด
โดยการเปลี่ยนในหลอดเลือดแก้ว(5,6)

4. การประกันคุณภาพของผลการทดสอบ
ใช้
สารควบคุมคุณภาพทางโลหิตรีเทียริยา คือ coulter®
4°C ซึ่งมีค่าทางโลหิตรีเทียริยาอยู่ในระดับปกติ Lot
114/1, 125/1 และ 138/1 ของบริษัท Coulter
Electronic Ltd. England ทดสอบความเที่ยงตรง (precision) ของทบทวน โดยวัดค่าความคลาด
เลือดเชื่อมต่อกับค่ามีค่าของ standard deviation (SD) และ coefficient of variation (CV %)
จากการตรวจสอบระหว่างวัน (inter-assay va-
riation) แล้วแสดงไว้ในตารางที่ 1 และทุกวันก่อน
ที่ทำการทดสอบหาค่าทางโลหิตรีเทียริยาของเลือดตัว
อย่างที่วัดค่าของ coulter® 4°C กล้อน ซึ่งมีที่
ได้อยู่ในเกณฑ์ที่ยอมรับได้ตลอดระยะเวลาที่ศึกษา
ก่อนเข้าควบคุมทางห้องปฏิบัติการเป็นบุคคลคน
เพื่อตรวจสอบ

5. เรียงลำดับตัวอย่างจากหลอดเลือดตัวคู่
ทุกหลอดคนโดยไปตรงครบ 12 คน ระยะเวลาที่
ทดสอบทั้งหมด 6 เดือน

6. การวิเคราะห์ข้อมูล เกณฑ์การพิจารณา
ความคงที่ของการเปลี่ยนแปลงค่าทางโลหิตรีเทียริยา
ในเลือดที่เก็บรักษาแต่ละคนตลอดระยะเวลา 10 วัน
ของผู้ยุติทดลองแต่ละคนนั้น ทำโดยคำนวณหาค่า
การเปลี่ยนแปลงที่ยอมรับได้ คือค่าผลการตรวจที่
ได้แต่ละวันแตกต่างจากค่าเฉลี่ย (คู่ข้อ 2) อยู่ภายใน
ในขอบเขต±2SD ของค่า inter-assay variation ของเทคนิค(7)(ตารางที่2) ดังนั้นความถูกต้องของผลการทดลองครั้งนี้เท่ากับ 95 เปอร์เซ็นต์

ผล

การเปลี่ยนแปลงค่าทางโลหิตวิทยาที่ตรวจพบว่า

1. เมื่อใช้สาร ACD และ CPD สำหรับป้องกันการแข็งตัวของโลหิต ในช่วงระยะเวลา 1 ถึง 6 วัน ไม่พบการเปลี่ยนแปลงค่าของ RBC, MCV, Hct, WBC, Hb และ spun hematocrit แต่ระหว่าง 7-10 วันของการเก็บรักษาเลือดตัวอย่างพบว่า ค่า WBC ของเลือด 11 ตัวอย่างมีการเปลี่ยนแปลงที่เกินขอบเขตยอมรับได้ (ตารางที่ 5) เมื่อเก็บรักษาเลือดตัวอย่างได้ 9-10 วันมีการเปลี่ยนแปลงอย่างมีความสำคัญ ค่า RBC จำนวน 5 ตัวอย่าง Hct จำนวน 6 ตัวอย่าง และ spun hematocrit จำนวน 2 ตัวอย่าง (ตารางที่ 2, 4 และ 7) ส่วนค่า MCV และ Hb ไม่แสดงการเปลี่ยนแปลงในขอบเขตยอมรับได้ตลอดเวลา 10 วัน ในเลือดที่ผสม ACD แต่เลือดที่ผสม CPD มี 1 รายที่ ค่า Hb เปลี่ยนแปลงในวันที่ 10 (ตารางที่ 3 และ 6)

2. เมื่อใช้สาร EDTA สำหรับป้องกันการแข็งตัวของโลหิต ในช่วงระยะเวลา 5 วัน ไม่พบการเปลี่ยนแปลงที่สำคัญของค่าทางโลหิตวิทยา (ตารางที่ 2 ถึง 7) และระหว่างวันที่ 6-10 ของการเก็บรักษาการเปลี่ยนแปลงค่าที่รับได้เกินกว่าเกณฑ์ที่ยอมรับ คือ RBC จำนวน 9 ตัวอย่าง (ตารางที่ 2)

ส่วนค่าที่เปลี่ยนแปลงทุกตัวอย่างคือ MCV, Hct, WBC และ spun hematocrit (ตารางที่ 3, 4, 5 และ 7) สำหรับ Hb แสดงการเปลี่ยนแปลง 1 ตัวอย่างในวันที่ 8 (ตารางที่ 6)

วิธีการ

การศึกษาดังกล่าวนี้แสดงให้เห็นว่าการปฏิบัติการพลังไฟฟ้าในประเทศไทย นำมาใช้ในระบบการประกันคุณภาพได้ โดยเฉพาะการใช้เครื่องมือตรวจชนิดอิเล็กทรอนิกส์ แต่ต้องความป็นปัญหาที่จะเป็นส่งท้ายให้เกิดภาวะเปลี่ยนแปลงที่ระบุเวลาที่เก็บรักษาเลือดตัวอย่าง ชนิดของสารป้องกันการแข็งตัวของโลหิตและลูกลมผิวผลการศึกษาซึ่งมีความชื่นชมได้ 95 เปอร์เซ็นต์ได้แสดงว่า เลือดตัวอย่างเก็บกันที่ผสม ACD หรือ CPDเก็บรักษาที่อุณหภูมิ 4 เซลเซียส เมื่อตรวจค่าทางโลหิตวิทยา คือ RBC, MCV, WBC, Hct และ Hb ด้วยเครื่อง Coulter counter® model ZF จะมีต่างกันที่ได้ในระยะเวลา 6 วัน แต่ถ้าใช้ตัวอย่างเลือดผสมสาร EDTA เก็บที่อุณหภูมิ 10 องศาเซลเซียส ได้ค่าระหว่างค่า parameters ดังกล่าวแล้วคงที่ในระยะเวลา 5 วัน เลือดตัวอย่างที่เก็บกันที่ผสม ACD นำมาใช้เป็นนาระบบควบคุมมาตรฐานได้ในระยะสั้นแต่ก็มีการแตกต่างค่า parameters พบว่าสาร ACD หรือ CPD มีคุณสมบัติทำให้ EDTA ในเก็บรักษาภาระการเก็บเลือดต้อง ดังที่แสดงในตารางที่ 2 ค่า RBC ในเลือดตัวอย่างจำนวน 5 ตัวอย่างที่ผสม ACD หรือ CPD เปลี่ยนแปลงในวันที่ 9 หรือ 10 แล้วเลือดตัวอย่างที่ผสม EDTA จำนวน 9 ตัวอย่างเปลี่ยนแปลงตั้งแต่วันที่ 7, 8, 9 หรือ 10 นอกจากนี้ ACD หรือ CPD ยังทำให้ปริมาณเลือดแตกต่างอันเนื่องจากไม่ได้ปริมาณการเปลี่ยนแปลงเกณฑ์ที่ได้รายงานกว่า
EDTA ค่า Hct ที่ตรวจโดยเครื่องมืออัตโนมัติ และเครื่อง microhematocrit (spun hematocrit) จึงควรจะระหว่างการเก็บรักษาไม่นานกว่า 8 วัน สำหรับ EDTA ทำให้เกิดการเปลี่ยนแปลงค่า Hct ตั้งแต่วันที่ 6 (ตารางที่ 4 และ 7) ผลการเทียบจากตารางกับการ เข้าถึงลิคติคข้อมูลค่า MCV ซึ่งคือ อัตราส่วนระหว่างปริมาตรเม็ดเลือดแดงต่อจำนวน และจำนวนเม็ดเลือดแดง เรียกค่าอย่างถ่วงน้ำ ครึ่งหนึ่ง (รายที่ 3,5,7,8,10 และ 11) ที่ผสมกับ ACD หรือ CPD มีค่า RBC และ Hct คงที่ ตลอดระยะเวลาที่ศึกษา 10 วัน (ตารางที่ 2 และ 4) ค่า MCV คงที่ด้วย (ตารางที่ 3) แต่เมื่อมีการ เองกับฟิสmoz EDTA มีค่า RBC เปลี่ยนแปลง ในวันที่ 7 หลังวันที่ 10 วันที่ 9, 10 และ 8 ตามลำดับ รายผู้ป่วย (ตารางที่ 2) ค่า Hct เปลี่ยนแปลงใน วันที่ 7, 6, 7, 8, 8, และ 6 ตามลำดับรายผู้ป่วย (ตารางที่ 4) และค่า MCV เปลี่ยนแปลงในวันที่ 8, 8, 6, 7, 8 และ 7 ตามลำดับรายผู้ป่วย (ตารางที่ 3)

อย่างไรก็ตาม ACD และ CPD ในสภาวะที่จะรักษาสุขภาพของเม็ดเลือดขาวในเลือดด้วยอย่าง ได้ดีที่ว่า EDTA (ตารางที่ 5) จึงควรใช้เลือดด้วยอย่างเป็นวัสดุควบคุมคุณภาพ ภายใน 5 วันสำหรับการ ตรวจเม็ดเลือด ด้วยเครื่องมือ Coulter counter® model ZF สำหรับค่า Hb ในตัวอย่างเลือดที่ ผสมสารบัญกร匡การข้างตัวของโลหิตมีความคงที่ตลอดระยะเวลา 10 วันของการทดลอง ยกเว้นในตัวอย่างการศึกษาที่ 12 พบการเปลี่ยนแปลงในวันที่ 8 และ 10 เลือดที่ผสม EDTA และ CPD ตามลำดับ (ตารางที่ 6) ซึ่งไม่ทราบสาเหตุสำหรับการทดลองครั้งนี้

การศึกษาครั้งนี้ได้ชี้อุปทานสุบานุกรมการศึกษาจากต่างประเทศ Lampasso พบว่า ค่า Hb, WBC และ Hct มีค่าไม่เปลี่ยนแปลงในเลือดที่ผสม EDTA และเก็บรักษาที่อุณหภูมิ 4 ชั่วโมงที่ 40 ชั่วโมง(8) เช่นเดียวกับการทดลองในข้อมูลของ WBC, RBC, Hb, Hct, MCV, และ MCHC ในเลือดด้วยอย่าง เหมาะสมกับการทดสอบวิธี B อย่าง (WBC, RBC, Hb, Hct, MCV, และ MCHC) ในวันที่ 4 และเมื่อมีความคงที่ในระยะเวลา 5 วัน โดยการศึกษาของ Britten และคณะ(2) และมีความคงที่ในระยะเวลา 10 วัน โดยการศึกษาของ Cohle และคณะ(3) นอกจากนี้ Lawrence และคณะ รายงานว่าค่า MCV ของเลือดที่ผสม ACD หรือ CPD ไม่เปลี่ยนแปลงตลอดระยะเวลา 10 วัน(9)

<table>
<thead>
<tr>
<th>Table 1. Data showing precision of the performance of 6 hematologic parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC 10¹²/1</td>
</tr>
<tr>
<td>Standard deviation (SD)</td>
</tr>
<tr>
<td>Coefficient of variation (CV %)</td>
</tr>
</tbody>
</table>
Table 2 Changes in RBC value of stored whole blood during 10 days. + = significant change.

<table>
<thead>
<tr>
<th>CASE DAY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
</tr>
</tbody>
</table>

- ACD
- CPD
- EDTA

Table 3 Changes in MCV value of stored whole blood during 10 days. + = significant change.

<table>
<thead>
<tr>
<th>CASE DAY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
</tr>
</tbody>
</table>

- ACD
- CPD
- EDTA
Table 4 Changes in Hct value of stored whole blood during 10 days. + = significant change.

<table>
<thead>
<tr>
<th>CASE</th>
<th>DAY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

- ACD
- CPD
- EDTA

Table 5 Changes in WBC value of stored whole blood during 10 days. + = significant change.

<table>
<thead>
<tr>
<th>CASE</th>
<th>DAY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

- ACD
- CPD
- EDTA
Table 6 Changes in Hb value of stored whole blood during 10 days. + = significant change.

<table>
<thead>
<tr>
<th>CASE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

† ACD †† CPD ††† EDTA

Table 7 Changes in spun hematocrit value of stored whole blood during 10 days. + = significant change.

<table>
<thead>
<tr>
<th>CASE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

† ACD †† CPD ††† EDTA
กระบวนการเกี่ยวกับคุณภาพทางคลินิกวิทยาที่ได้ทดลองอย่าง Dutra ได้แนะนำให้ใช้วิเคราะห์ซ้ำ (replicate) ภายในวงจรด้วยเร(cn)ที่มีการบดบด สำหรับผู้ป่วยกว่าความคลาสเซ็นต์ของผลการวิเคราะห์(1) Cohle และคณะได้เสนอให้ใช้ด้วยอย่างเล็กเล็ก EDMTA เก็บที่อุณหภูมิ 4°C เป็นวิธีควบคุมคุณภาพทางคลินิกวิทยาของ MCV ควรจะเก็บ 10 วัน อังกฤษที่ผ่านมาในประเทศไทยเพื่อการพิจารณาเปลี่ยนแปลงผลการศึกษาครั้งนี้มีทราบว่าผลด้วยการควบคุมผลิตมีความคงที่กับการใช้ปัจจุบันมูลค่า Hct โดยวิธีใช้เครื่อง microhematocrit ได้ (ตารางที่ 7) ข้อควรระวังคือการใช้เลือดด้วยอาการเป็นวิธีควบคุมสั้นที่การเปลี่ยนแปลงผลด้วย หรือจับกุมได้(8) ขั้นตอนต่อไปควรจะยังเวลาสำหรับกระบวนการควบคุมคุณภาพของห้องปฏิบัติการคลินิกวิทยาโดยใช้เลือดด้วยอาการ

คณะเป็นวิธีควบคุมคุณภาพแทนวัสดุที่ต้องส่งจากต่างประเทศ ถ้าเป็นผลสำเร็จจะลดค่าใช้ง่ายของห้องปฏิบัติการได้มาก

สรุป

ศึกษาการเปลี่ยนแปลงค่าทางคลินิกวิทยาของเลือดด้วยการควบคุมคุณภาพได้จำนวน 12 คนพบว่าเมื่อผลที่ต้องกับการเครื่องช่วยของคลินิกและเก็บที่อุณหภูมิ 4°C เล็กเล็ก EDMTA ค่าความคงที่ในระยะเวลา 5วันลบจากนั้น Hb และ Hct ไม่เปลี่ยนแปลงได้ขนาด 8 วันผลการศึกษาเป็นแนวทางสำหรับการใช้เลือดด้วยการที่ที่เหมาะสมในห้องปฏิบัติการสำหรับเป็นวิธีควบคุมคุณภาพทางคลินิกวิทยาอย่างต่อเนื่องได้

อ้างอิง

6. นฤทัย ไชยศรัทธา, สมพงษ์ จุฑาภรณ์. ความสัมพันธ์ระหว่างค่าซีโมโลนีนและนิการีติค. พยาบาลนิสิตวิทยา 2525 มกราคม; 26 (1): 16-21

7. Davy CW, Jackson MR, Walker JM. Stabilities of some constituents of Marmoset (Callithrix jaccus) plasma
under various condition of storage, Clin Chem 1984 Jan; 30 (1) : 101-104