
The neuroendocrine system consists of dispersed neuroendocrine cells in various locations of the body. They may form organs, be in clusters or be single cell among other tissues. In 1869, Paul Langerhans discovered islets cells in the pancreas. He probably was the first person to discover a portion of the neuroendocrine cell system. Since then, the number of known sites in this system has been increasing. Neuroendocrine cells have been known by different names in the literature. During 1968–69, Everson Pearse grouped these cells together under the acronym “APUD” (Amine and Amine-precursors uptake and Decarboxylation) cell system. According to his grouping methodology, APUD cells had common chemical and ultrastructural properties. Less than ten years later, a rival idea called “Paraneuron” was proposed by Fujita. Nowadays, the neuroendocrine concept has again changed. A new set of criteria for neuroendocrine cells was proposed by Keith Langly in 1994. According to him, the embryonal origin of these cells, which was once believed to be neuroectodermal, is now not a requirement. Today, identification of these cells tends to be dependent on the presence of their marker proteins, the neuroendocrine markers.

Key words : Neuroendocrine cells, APUD cells, Paraneurons.

Reprint request : Keelawat S. Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Received for publication. May 15, 1997.
In the context of the neuroendocrine cell system, markers are used to identify specific cells. This has led to the development of various techniques to identify these cells, such as immunohistochemistry for marker proteins or in vitro techniques. A general understanding of neuroendocrine cells and their specific hormones has been developed, allowing for the identification of various cell types and subtypes within this system. Friedrich Feyrer's work in 1934 highlighted the importance of these markers in understanding the physiology of the body. His work on the identification of these cells in the human body, specifically with the use of the Pascher method, has led to a better understanding of the role of neuroendocrine cells in various physiological processes. This work has been further expanded through the use of antibody techniques and the development of new markers, such as those specific to argyrophilic cells. The concept of APUD (Amine and amine precursor uptake and decarboxylation) has been developed and further expanded, which has led to a better understanding of the role of these cells in various physiological processes. This work has also led to the development of new techniques, such as immunohistochemistry, which have allowed for a more detailed understanding of the role of these cells in various physiological processes.
ตาราง 1. Cytochemical characteristics of Polypeptide hormone - producing cells of the APUD series.(9)

(A) 1. Fluorogenic amine content (catecholamine, 5-HTa or other); a, primary; b, secondary uptake
(P) 2. Amine precursor uptake (5-HTP, DOPA)
(U)
(D) 3. Amino acid decarboxylase
4. High side chain carboxyl or carboxamide
5. High nonspecific esterase or cholinesterase (or both)
6. High alpha-GPD (Alpha-glycerophosphate menadione reductase)
7. Specific immunofluorescence

a5HT, 5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan; DOPA, dihydroxyphenylalanine; Alpha-GPD, Alpha-glycerophosphate dehydrogenase.

จากคุณสมบัติทั้ง 7 ข้อนี้ มีเพียง 3 ข้อแรกเท่านั้นที่แสดงคุณสมบัติอักษรย่อที่ย่อเป็นที่น่าจะข้อเขียนสีเหล็กเหล่านี้คือ APUD (Amine and amine precursor uptake and decarboxylation)(9) กล่าวคือ เซลล์เหล่านี้จะเก็บสะสมสารพวก amine ซึ่งได้แก่ catecholamine, 5-HT (5-hydroxytryptamine) และ dopamine ข้างใด ๆ อีกมีอยู่ในเซลล์อยู่แล้วหรือ ไปถึงมาจากนอกเซลล์ (uptake) นอกจากนี้ยังมีสารอาหารเชิงสารพวก amine precursors เช่น dihydroxyphenylalanine และ 5-hydroxytryptophan (5-HTP) แล้วเปลี่ยนแปลงให้เป็นสารamines คือ dopamine และ 5-hydroxy-tryptamine (5-HT) โดย enzyme L-aminoacid decarboxylase(6,8,9) การทดลองทำโดยนิยม 5-hydroxytryptophan (5-HTP) เข้าไปในตัวสุนัขแล้วทำให้ตายภายใน 4-6 ชม. โดยใช้สูตรที่ถูกกลุ่มหนึ่งซึ่งมีน้ำหนักมวลและเพศไม่ได้ถึงกับเป็นกลุ่มควบคุม (control group) หลังจากผ่านสุนัขตายแล้ว ถ้านำเนื้อที่ต้องการศึกษาไปแช่แข็งและทำให้แห้งที่อุณหภูมิ -40°C ใน thermo-electric dryer ประมาณ 6-8 ชม. แล้วนำไปในโอซีโค formaldehyde ที่ 50°C เป็นเวลา 1 ชม. ระยะเวลาของ formaldehyde จะเปลี่ยนสารพวก amine ไปเป็น fluorescent isoquinoline derivatives ทำให้เห็นเป็นสารเรืองแสงขึ้นมา ผลการศึกษาพบว่า หลังจากนั้น 5-HTP ทำให้การเพิ่มขึ้นของ 5-HT fluorescence ที่ B-cells ของ islets of Langerhans และ C-cells ของ
thyroid gland อย่างมาก ส่วน anterior pituitary corticotrophs และ melanotrophs ใน pars intermedia ถูกพบมีการเพิ่มขึ้นของ 5-HT fluorescence เช่นกันแต่ น้อยกว่า ในนูทยักกลุ่มควบคุม (ไม่ได้เป็น 5-HTP) พบสารเรื่องแสงที่ต่างกันกว่านี้การทดลองนั้นแสดงให้เห็นว่า เซลล์เหล่านี้มีการ uptake 5-HTP แล้วมีการเปลี่ยนให้เป็น 5-HT(10) ทำให้เห็นเป็นสารเรื่องแสงที่ซับซ้อนกว่าในกลุ่มควบคุม นอกจากนี้ยังมีการทดลองด้วยกันนั้น ในลабอร์ทินอีกกลุ่มชนิด(10)

คุณสมบัติต่างๆที่ 7 ข้อที่แสดงในตารางที่ 1 นั้นอาจจะไม่จำเป็นต้องมีควบคุมอยู่ก็ได้ โดยเฉพาะ คุณสมบัติที่ 6 ซึ่งคือ high level of enzyme Alpha-glycerophosphate dehydrogenase นั้นเป็นคุณสมบัติที่อาจไม่จำเป็นต้องพบในเซลล์ทุกชนิดใน APUD series(8,9) สำหรับคุณสมบัติข้อที่ 7 (specific immunofluorescence) นั้น Pears ถือว่าเป็นคุณสมบัติที่มีความจำเป็นอย่างมาก แสดงให้เห็นว่าเซลล์ใน APUD series เหล่านี้สามารถผลิต specific peptide hormone (ซึ่งใช้ immunofluorescent techniques ในการตรวจ) คุณสมบัติข้อนี้เป็นที่มาของการเรียกอีกอย่างของ APUD cells ว่า “Peptide-hormone-producing cells”(8)

นอกจากคุณสมบัติทั้งหมดแล้ว Pears ยังสรุปคุณสมบัติต่างๆที่พบในการตรวจโดยกล้องจุลทรรศน์อิเล็กทรอนิกส์ของเซลล์เพราะนี้ โดยคุณสมบัติที่พบร่วมในเซลล์เหล่านี้ได้แสดงในตารางที่ 2

ลักษณะที่น่าสนใจได้ว่าคุณสมบัติสุดๆในการตรวจสอบกล้องจุลทรรศน์อิเล็กทรอนิกส์ คือ การพบ membrane-bound secretion vesicles ซึ่งมี electron-dense granules อยู่ภายใน(8) Granules เหล่านี้เป็นที่มาของสารพะ peptides ต่างๆนั้นเอง สาร peptides เหล่านี้จะถูกหล่อออกนอกเซลล์โดยกระบวนการ exocytosis ซึ่งเป็นวิธีการที่เหมือนกันในเซลล์ทุกชนิดใน APUD series (9)

ในปี 1968 พบว่ามีสมาชิกของ APUD cells เพียง 14 ชนิดเท่านั้นและไม่จำานวนนี้เป็นเพียง 5 ชนิดเท่านั้นที่ได้รับการยอมรับโดยไม่มีข้อโต้แย้งใดๆ ว่ามีคุณสมบัติตาม criteria ของ APUD cell series สำหรับเหตุผลนี้มีเหตุผลที่ยังยึดยืนอยู่คือ (8,9) เซลล์เหล่านี้ได้แสดงในตารางที่ 3

จากตารางเซลล์ในข้อที่ 1 ถึง 5 นั้นได้รับการพิสูจน์ว่าเป็นสมาชิกใน APUD series อย่างไม่มีข้อโต้แย้ง และมีนินเดีย peptide hormones ต่างๆ
ตารางที่ 3. Polypeptide–secreting Endocrine cells (the APUD series).

1. Pituitary corticotroph (ACTH)
2. Pituitary melanotroph (MSH)
3. Pancreatic islet B cell (Insulin)
4. Pancreatic islet α₂ cell (Glucagon)
5. Thyroid and extrathyroid C cell (calcitonin)
6. Stomach–argyrophil cell (Gastrin)
7. Stomach–enterochromaffin cell (Gastrin, secretin)
8. Intestine – argyrophil cell (cholecystokinin–pancreozymin)
9. Intestine–enterochromaffin cell (secretin, glucagon)
10. Pancreatic islet α₁ cell (Gastrin)
11. Carotid body type I cell (Glommin)
12. Lung endocrine (Feyerter) cell (Pneumokinin)
13. Adrenal medulla A cell (Chromogranin → medullarin)
14. Adrenal medulla NA cell (Chromogranin → medullarin)

ตามที่ได้ระบุไว้ในวงเล็บ ด้วยข้อที่ 6 ถึง 14 นั้นก้าวลงรายการพิสูจน์ยืนยันต่อไป และยังไม่ยืนยันที่แน่นอนว่ามันผลิต peptide hormone ที่ระบุอยู่ในวงเล็บในแต่ละข้อหรือไม่

เนื่องจากคุณสมบัติทางของเซลล์เหล่านี้มีร่วมกัน Pearse จึงคิดว่าเซลล์เหล่านี้จะมีด้านก้าวหน้าในช่วง embryo มาจาก germ layer ซึ่งเดิมกันนี้เชื่อว่าเซลล์เหล่านี้มีด้านก้าวหน้ามาจาก neural crest นั้นเองทฤษฎีนี้ยังสนับสนุนปรากฏการณ์ที่ว่าเนื้อเยื่อของระบบ neuroendocrine นี้มักก่อขึ้นในตำแหน่งต่างๆ ของร่างกายพร้อมกันหลายๆตำแหน่งโดยทั่วไป โดยที่ทฤษฎี Pearse ไม่ได้ให้คุณสมบัติข้อเท่าไรในcriteria ของ APUD cells ของเขา

จำนวนสมาชิกของเซลล์ใน APUD series ได้เพิ่มขึ้นเรื่อยๆ ในปี 1979, 10 ปีหลังจากการเสนอทฤษฎีณ เซลล์ APUD มีจำนวนถึงกว่า 40 ชนิด(8,12) ในจำนวน 40 ชนิดนี้มีเพียง 6 หรือ 7 ชนิดเท่านั้นที่พิสูจน์ได้ว่ามันด้านก้าวหน้ามาจาก neural crest นั้นเอง(8,11) เซลล์เหล่านี้ได้ถูกแบ่งเป็น central และ peripheral divisions (12). Central division ได้แก่ เซลล์ neuroendocrine และ endocrine ของ hypothalamo–pituitary axis และ pineal gland ในขณะที่ peripheral division ได้แก่ APUD cells ที่อยู่นอกพื้นที่ของ central division นั้นเอง (12) ตารางที่ 4 และ 5 แสดงสมาชิกใน central และ peripheral division ของ APUD cells และสาร peptides และ amines ที่มันผลิตขึ้น.
ตารางที่ 4. The central division of the diffuse neuroendocrine system.\(^{(12)}\)

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Peptide products</th>
<th>Amine Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pineal magnocellular</td>
<td>Arginine vasotocin, lutropin releasing hormone</td>
<td>Melatonin, 5-Hydroxytryptamine</td>
</tr>
<tr>
<td>Hypothalamic paraventricular</td>
<td>Releasing factors, release inhibiting factors</td>
<td>Dopamine, Norepinephrine, 5-Hydroxytryptamine</td>
</tr>
<tr>
<td>Pituitary pars distalis</td>
<td>FSH, LH, TSH</td>
<td>Norepinephrine, 5-Hydroxytryptamine</td>
</tr>
<tr>
<td>Pituitary pars intermedia</td>
<td>ACTH, MSH</td>
<td>Histamine (Tyramine)</td>
</tr>
<tr>
<td></td>
<td>B-LPH</td>
<td>Gastrin, calcitonin</td>
</tr>
</tbody>
</table>

ตารางที่ 5. The peripheral division of the diffuse neuroendocrine system.\(^{(12)}\)

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Peptide products</th>
<th>Amine Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas B,A</td>
<td>Insulin, glucagon</td>
<td>5-Hydroxytryptamine</td>
</tr>
<tr>
<td>Stomach D,D(_2)F</td>
<td>Somatostatin, PP</td>
<td>Dopamine</td>
</tr>
<tr>
<td>Stomach G</td>
<td>Gastrin, Enkeph., ACTH</td>
<td>-</td>
</tr>
<tr>
<td>Stomach AL(_1)</td>
<td>Glucagon</td>
<td>-</td>
</tr>
<tr>
<td>Intestine EC(_1)</td>
<td>Substance P</td>
<td>5-Hydroxytryptamine</td>
</tr>
<tr>
<td>Intestine EC(_1) (M)</td>
<td>Motilin</td>
<td>Histamine</td>
</tr>
<tr>
<td>Intestine D</td>
<td>Somatostatin</td>
<td>-</td>
</tr>
<tr>
<td>Intestine L,S,P</td>
<td>Glicentin, Secretin</td>
<td>-</td>
</tr>
<tr>
<td>Intestine D,K</td>
<td>Somatostatin, GIP</td>
<td>-</td>
</tr>
<tr>
<td>Intestine N</td>
<td>Neurotensin</td>
<td>-</td>
</tr>
<tr>
<td>Intestine H</td>
<td>VIP</td>
<td>-</td>
</tr>
<tr>
<td>Lung K (Feyrter)</td>
<td>Bombesin</td>
<td>-</td>
</tr>
<tr>
<td>Parathyroid chief Parathyrin</td>
<td>-</td>
<td>Epinephrine, norepinephrine</td>
</tr>
<tr>
<td>Adrenomedullary E,NE</td>
<td>-</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>Sympathetic Ganglionic</td>
<td>VIP</td>
<td>Dopamine,norepinephrine</td>
</tr>
<tr>
<td>Sympathetic SIF</td>
<td>-</td>
<td>Premelatin</td>
</tr>
<tr>
<td>Carotid body Type I</td>
<td>-</td>
<td>Dopamine,norepinephrine</td>
</tr>
<tr>
<td>Melanoblast/cyte</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thyroid/ultimobranchial C</td>
<td>Calcitonin, somatostatin</td>
<td>5-Hydroxytryptamine</td>
</tr>
<tr>
<td>Urogenital tract EC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>-</td>
</tr>
</tbody>
</table>

- PP, Pancreatic polypeptide; ECL, enterochromaffin; Enkeph., Met—Leu-enkephalin; SIF, small in tensely fluorescent. Glicentin formerly enteroglucagon.
The Paraneuron Concept

หลังจาก concept เรื่อง APUD cells ถูกนำมาเสนอโดย Pearse ราวๆ ปี 1966-69 เกือบๆ 10 ปีต่อมาได้มี concept ใหม่เข้ามาชี้แจงความคิดก็คือ Fujita เข้าไปดูอยู่สมมติทางเคมีคือ amine และ amine precursor uptake and decarboxylation นั่นไม่มีความสำคัญสำหรับไว้เป็น criteria ในการจัดกลุ่มเซลล์เหล่านี้ ซึ่งเขาระยละเอียดลงไปนั่นว่า “Paraneuron”

คุณสมบัติที่ใช้เป็น criteria สำหรับ Paraneuron ได้แสดงตามตารางที่ 6

ตารางที่ 6. Criterio of Paraneuron.

1. A paraneuron is a cell that is able to produce (1) substance(s) identical with, or related to, neurotransmitters or suspected neurotransmitters, and (2) protein/polypeptide substance(s) that may possess hormonal actions
2. A paraneuron is a cell that possess synaptic vesicle-like and/or neuro-secretion-like granules
3. A paraneuron is a cell that is recepto-secretory in function. It releases secretions in response to adequate stimuli acting upon its receptor site on the cell membrane
4. A paraneuron is a cell whose origin is common with neurons, that is, neuroectoderm

จาก criteria ทั้ง 4 ข้อของ Fujita จะเห็นได้ว่าเซลล์ที่มาจาก neuroectoderm ว่าส่วนที่มีความล้ายคล้วยกับ concept อีของ Pearse ได้แก่ สมารถของเซลล์ที่เรียกว่า Paraneuron ของการสร้างสาร polypeptides เหมือนกัน และยังกำหนดให้ Fujita ได้แก่ เซลล์ต่างๆ ที่แสดงในตารางที่ 7

ตารางที่ 7. Main members of the Paraneuron Family.

a. Chromaffin cell of the adrenal medulla.
b. SIF (small intensively fluorescent) cell in autonomic nerve ganglia.
c. Chief cell of the carotid body.
d. Parafollicular cell of the thyroid.
e. Parathyroid cell.
f. Anterior pituitary cell.
g. Pancreatic islet cell.
h. Basal-granulated cell in the gastroenteric mucosa, pancreatic and bile ducts, and urogenital tracts.
i. Gustatory cell.
j. Basal-granulated cell in the bronchial epithelium.
k. Hair cells of the inner ear and lateral line organ.
l. Photoeceptor cells of the retina and pinealocyte.
m. Olfactory cell.

n. Liquor contacting neurons.
o. Merkel cell of the skin.
p. Melanocyte.
q. Mast cell.
อย่างไรก็ตาม Fujita ก็ไม่ได้ให้คำอธิบายที่
ชัดเจนในการบอกความแตกต่างระหว่างเซลล์
paraneuron และ neuron

แนวความคิดสัมพันธ์ของ Neuroendocrine cells

ในปี ค.ศ. 1994 Keith langley(4) ได้รวบรวม
ข้อมูลต่างๆ ซึ่งตีพิมพ์มาตั้งแต่ยุคต้นๆ ของปี 1970
เป็นต้นมาและได้เสนอ criteria ใหม่ของ neuroendocrine
cells ซึ่งมี 4 ข้อต่างๆ ต่อไปนี้

1) Neuroendocrine cells produce a
neurotransmitter / neuromodulator or a neuropeptide
hormone

2) These substances are contained within
membrane-bound granules or vesicles, from which
they are released by a process of regulated exocytosis
in response to external (neural) stimuli.

3) Neuroendocrine cells differ from
neurons by the absence of axons and specialized
nerve terminals (i.e. their mode of transmission is
endocrine or paracrine rather than synaptic).

4) Different types of neuroendocrine cells
share many specific properties and express several
proteins in common, but the expression of any one
marker protein is not and absolute criterion.

Criteria นี่ได้รับอิทธิพลอย่างสูงมาจาก
paraneuron concept ของ Fujita อย่างไรก็ตาม concept
นี้ได้ถูกความแตกต่างอย่างชัดเจนระหว่างเซลล์ประสาท
และเซลล์ neuroendocrine โดยความแตกต่างก็คือ
เซลล์ neuroendocrine ไม่มี nerve terminals เหมือน
ในเซลล์ประสาท ซึ่งใน paraneuron concept ไม่ได้
บอกความแตกต่างระหว่างเซลล์ประสาท และ
paraneurons เอาไว้ นอกจากนี้ criteria ใหม่ไม่ได้
รวมเอาคำกำเนิด ของเซลล์ร่วมจากที่เดียวกันหรือไม่
(Neuroectoderm) มาเป็น criteria เหมือนใน concept
ของ Fujita
d้านกำเนิดในระยะ Embryo ของ Neuroendocrine
cells

ตั้งแต่ต้นมาไว้ว่าแล้วว่าในยุคแรกๆนั้น มีความเชื่อ
ว่า เซลล์ที่เรารู้จักในระยะของ neuroendocrine ใน
ปัจจุบันมีต้นกำเนิดมาจาก neuroectoderm
อย่างไรก็ตามข้อมูลจากห้องทดลองหลายแห่งได้แสดง
ให้เห็นว่าความเชื่อดังกล่าวนั้น ไม่เป็นความจริง การ
ทดลองที่สำคัญที่แสดงว่า neuroendocrine cells ไม่ได้
mีต้นกำเนิดมาจาก neuroectoderm (โดยเฉพาะ neural
crest) เสมอไปนั้นได้แก่การทดลองของ Ann Andrew
(3,14) และ Nicole M. Le Douarin(4,8,15)

Ann Andrew(3) ได้ทำการทดลองโดยนำตัว
อ่อนของลูกแก่ต้นระยะ primitive streak ถึงระยะ 22-
somite มาเป็นสัดส่วนทดลอง เชนป้องตัวอ่อนของลูกแก่
เป็นกลุ่มทดลองและกลุ่มควบคุม โดยในกลุ่มทดลองนั้น
 เราได้ติดอาวุธที่เป็นเครื่องดื่มฉีดเป็น neural crest
และ neural plate ออกไปจากตัวอ่อนโดยยังคงไว้ใน
กลุ่มควบคุม ตัวอย่างทั้ง 2 กลุ่มนี้ถูกเจาะเพื่อให้เจ็บมี
อายุราวๆ 18 ถึง 20 วัน แทนผ่าศักพาระซ์
tenterochromaffin ในฝ่าได้ที่เกิดชันม่า

จุดประสงค์ในการทดลองนี้ต้องการจะสืบสู่เรื่อง
enterochromaffin cells มีต้นกำเนิดมาจาก neural crest
หรือไม่ ถ้าหากมีต้นกำเนิดมาจาก neural crest จริง
ก็ไม่สามารถพบเซลล์ในกลุ่มทดลองได้จากจะไป
เสมียนไว้ เพื่อจากต้นกำเนิดของมันซึ่งเกิดจาก neural crest
นั้นถูกตัดออกไปทันทีที่มันจะเดินทางมาถึงตัวสัตว์
ระยะแรกแล้ว

ผลการทดลองพบว่า พบ enterochromaffin
cells ที่อยู่ในกลุ่มทดลองและกลุ่มควบคุม พบเช่นเซลล์ที่เรียกว่า enteric ganglia นั้น ไม่พบในกลุ่มทดลอง พบเฉพาะในกลุ่มควบคุมเท่านั้น จากการทดลองนี้แสดงให้เห็นว่า เช่นเซลล์จาก neural crest ได้เดินทางมาที่ที่ปลายและได้เปลี่ยนแปลงไปเป็นเซลล์ที่เรียกว่า enteric ganglia เท่านั้น ไม่มีการเปลี่ยนแปลงไปเป็น enterochromaffin cells ดังนั้นจึงเป็นข้อสำคัญข้อหนึ่งว่า neuroendocrine cells อาจจะไม่จำเป็นต้องมีเดินทางมาจาก neural crest

Nicole Le Douarin และคณะ(4,8,15) ได้ทำ การทดลองโดยใช้ตัวอย่างของแกะผู้ใหญ่ พบว่า ตัดส่วนที่เป็น neural crest ของตัวอย่างของแกะผู้ใหญ่ ไปปลูกกลับ (transplant) เข้าไปในตัวอย่างของสุกุนที่โดยไปเพศผู้ที่มี neural crest ที่ถูกตัดออกมาจากตัวอย่าง ของสุกุน ทำการเชื่อมต่อกับสถานะเดิมได้เท่า เช่นเซลล์จาก neural crest ได้เดินทางไปที่ที่ปลายและเจริญพัฒนาไปเป็นเซลล์ที่ที่ปลาย พวกอสุนทรายแยก และเซลล์ของสุกุนในกลุ่มได้เนื่องจากบริเวณลำตัวของเซลล์ต่างกัน ในสัตว์ได้รับสั่งที่เหนือหลอดกลอง กับการทดลองของ Ann Andrew กล่าวถึงเซลล์ neural crest ของแกะผู้ใหญ่ที่อุทิศให้แก่สุกุน นั้น ได้เดินทางไปที่ปลายและเดินทางไปเป็นเซลล์ enteric ganglia และส่งสัญญาณไปถึง mucosa ของลำตัวที่สั่งที่เหนือ enterochromaffin cells อยู่ ที่สัตว์ ที่มี enterochromaffin cells เป็นเซลล์ที่เป็นสุกุนได้รับสั่งที่เหนือenteric ganglia เป็นเซลล์ของแกะผู้ใหญ่ ดังนั้นจึงสรุปได้เขียนเกี่ยวกับ enterochromaffin cells นั้นไม่ได้มีส่วนเกี่ยวกับ neural crest อย่างไรก็ตาม การทดลองของ Douarin ยังสามารถพิสูจน์ได้ว่า neuroendocrine cells หลายชนิดมีเดินทางมาจาก neural crest ตัวอย่างเช่น anterior pituitary cells, calcitonin-secreting cells หรือ parafollicular cells ของต่อมไทรอยด์ เป็นต้น

ข้อมูลจากการทดลองต่างๆ เหล่านี้ทำให้ Pearse ซึ่งเป็นช่างชีวิตร่างกาย ดูเหมือนจะกล่าวว่า เช่นเซลล์เหล่านี้มีเดินทางมาจาก ก้านจาก neural crest เริ่มมีความคิดเปื่อยไป ในระยะเวลาอื่นๆ เขานี้ได้แสดงถึงการเปลี่ยนแปลง。

ในปัจจุบันนี้ค้นพบของ neuroendocrine cells ไม่ใช่ข้อถูกต้องสำหรับใช้เป็น criteria อีกต่อไป สิ่งสำคัญอยู่ที่คุณสมบัติที่แสดงออกกันมากกว่า โดยเฉพาะที่มีการผลิตเครือข่าย สิ่งที่หลากหลาย มากมายจะแตกเพื่อให้ใช้เป็นคุณสมบัติที่สำคัญของมัน ก็คือ marker proteins ที่สามารถใช้เป็น universal neuroendocrine markers ได้

Markers สำหรับ Neuroendocrine cells

ในยุคก่อนหน้านี้ นั้น markers ของ neuroendocrine cells มากมายได้แก่สารพวก amines และ amine precursors- ต่างๆรวมถึง amino acid decarboxylase, nonspecific esterase หรือ cholineresterase, alpha glycero-phosphate dehydrogenase รวมถึง peptide hormones ต่างๆ ตาม criteria ของ APUD cells ของ Pearse นั้นเอง(9) เมื่อเวลาผ่านไป markers ของ neuroendocrine cells ก็ถูกค้นพบเพิ่มขึ้นเรื่อยๆ Markers เหล่านี้ในทุกๆ ว่าเป็นmarkers ของเซลล์ประสาน ดัง(8) ที่นั้นคงเนื่องมาจาก เช่นเซลล์ neuroendocrine นั้นมีโครงสร้างหลายอย่างที่ทำให้เซลล์ประสาน นอกจากนี้ markers เหล่านี้ยังนำมาใช้ในการตรวจสอบเนื้อเยื่อระหว่างการ differentiation ได้(17,18,19)
Neuroendocrine markers อาจจัดแบ่งตามส่วนต่างๆของเซลล์ที่มีเป็นส่วนประกอบได้ดังต่อไปนี้

1. ส่วนประกอบของชั้นโคเดคา ได้แก่(8)
 1.1 L-amino acid decarboxylase
 1.2 Acetylcholinesterase
 1.3 Neuron-specific enolase (NSE)(17,20)
 1.4 Protein gene product (PGP) 9.5(8,21)
 1.5 7B2(5)

2. ส่วนประกอบใน granules ได้แก่(8)
 2.1 Peptide hormones
 2.2 HISSL-19(1,5)
 2.3 Chromogranins A,B(17,18)
 2.4 Secretogranin II (Chromogranin C)(5)
 2.5 Carboxypeptidase H
 2.6 Leu 7(1,5)

3. ส่วนประกอบที่อยู่ในห้อง secreatory vesicle(8)
 3.1 Cytochrome b-561
 3.2 Amine transporter
 3.3 Synaptophysin(18)
 3.4 P65 / synaptogamin
 3.5 Synaptobrevin / VAMP

4. ส่วนประกอบที่ plasma membrane(8)
 4.1 Receptors สำหรับ peptides หรือสารสื่อสาร (neurotransmitters เช่น somatostatin, GABA, glycine, glutamate และ tetanus toxin receptors)
 4.2 A2B5
 4.3 Neural cell adhesion molecules eg., NCAM, L1 (7,22)

Neuroendocrine markers อาจแบ่งกลุ่มได้ 2 กลุ่มใหญ่ดังนี้

1. General neuroendocrine markers ใช้เป็นmarkers สำหรับ neuroendocrine cells ทั่วไป ไม่ว่าจะมาจากตำแหน่งไหน markers เหล่านี้ ได้แก่ cytoplasmic proteins, small secretory vesicles หรือ dense-cored secretory และ plasma membrane
 1.1 Cytosolic marker(1,5) ได้แก่
 Neuron-specific enolase (NSE)(17,20), Protein gene product 9.5 (PGP,9.5),7B2(5),SV2(5)
 1.2 Small Vesicle - Associated Markers(1,5)
 Synaptophysin(18), Synapsin, Synaptotagmin, SV2, Synaptobrevin

1.3 Secretory Granule - Associated Markers(1,5)
 Chromogranin A,Band C (Secretogranin II)(17,18), Secretory protein HISSL-19, Leu 7

1.4 Plasma membrane constituents
 - Neural cell adhesion molecule (NCAM)(7,22)

ไม่จำเป็นที่จะที่ชั้นชั้น chromogranin เป็น markers ที่เป็นสัดส่วนสูงของ neuroendocrine cells(8) อย่างไรก็ตามยังไม่มี marker ชนิดใดที่สามารถใช้เป็นตัว диагностิกได้ยืนยันมาก(8)

2. Cell specific Markers(1,5) Markers ชนิดนี้จะพบในเซลล์ neuroendocrine บางชนิดที่จัดเจาะ ไม่ได้มีในเซลล์ neuroendocrine ทั่วไปเหมือนกับ general markers มันคือพวก peptides และ biogenic amines ที่ทำหน้าที่เป็นสารธรรมชาตุ หรือ neurotransmitters นั่นเอง
วิธีการตรวจหา Neuroendocrine cells

มีวิธีการต่างๆหลายต่อตรวจหา neuroendocrine cells นอกจากนี้จากการตรวจสอบโครงสร้างของเซลล์โดยการ
ย้อมธรรมชาติ วิธีเหล่านี้ได้แก่(7)

1) Special histological stains
2) Immunocytochemistry
3) Electron microscope
4) อื่นๆ

1) Special histological stains

ในยุคแรกๆนั้น การตรวจหาเซลล์พวกนี้มักใช้วิธีต่างๆเหล่านี้ เช่น lead haematoxylin, toluidine
blue และ silver impregnation techniques ซึ่งยังคงใช้อยู่ในปัจจุบันและมีการประกอบด้วยวิธีหลักๆ อยู่ 2 วิธี
ได้แก่

1.1 Argentaffin methods หลักการคือ silver
salts ที่ใส่ลงไปจะถูกสารพวก amines ที่มีอยู่ใน
neuroendocrine cells ทำการ reduce ทำให้เกิด
ตะกอนสีน้ำตาลภายในเซลล์

1.2 Argyrophilic methods นี่เป็นวิธีการ
ฟอร์มัลเดไฮเดโอมีการใช้เป็นการ reduce silver
ions

นอกจากนี้เซลล์ neuroendocrine บางชนิดก็
อาจมีวิธีการเฉพาะในการตรวจหา ด้วยการใช้
kalium dichromate หรือ chromic acid ทำการ
fix เซลล์พวก paraganglia ทำให้เกิดตะกอนเม็ดสี
น้ำตาลและหรือเหลือง เม็ดสีเหล่านี้เกิดจากการ oxidation
สารพวก catecholamines หรือ serotonin ในเซลล์
นั้นเอง เซลล์ที่ให้ผลบวกต่อปฏิกิริยาที่เรียกว่า
“Chromaffin-positive cells” ซึ่งเซลล์เหล่านี้ ได้แก่
paraganglia และ entero–chromaffin cells ในลำไส้(6)

2) Immunocytochemistry(7)

วิธีนี้ใช้ตรวจปอดที่เป็น markers ต่างๆได้ก็กล่าวไว้
ข้างต้นโดยใช้อแดโดยที่จำพวกต่อประสิทธิ์เหล่านั้นมา
ทำปฏิกิริยากับมัน แอดนิตร์คือเซลล์จะมีสารที่เป็น
เหมือนกับกลุ่มติดอยู่เพื่อให้มันถูกมองเห็นได้โดยง่าย
ในการนี้ที่มันทำปฏิกิริยากับปอดที่เป็น markers ที่
จำพวกเหล่านี้ Markers ของเซลล์ neuroendocrine
ประกอบไปด้วย general markers และ cell–specific
markers ดังเช่นได้กล่าวแล้วไปแล้ว

3) Electron microscopy(1,8)

สิ่งสำคัญที่เห็นได้จากการตรวจด้วย การเห็น membrane bound,
dense-core secretory granules (เส้นผ่านศูนย์กลาง >
80 mm) ใน cytoplasm นอกจากนี้ยังเห็น small clear
vesicles (เส้นผ่านศูนย์กลาง 40 - 80 mm) ซึ่งจะ
เหมือนกับ synaptic vesicles ของเซลล์ประสาท(23)

4) วิธีการอื่นๆ เช่น localization of receptor
(binding) sites, localization of mRNAs (in situ
hybridization) หรือการตรวจหาระบบย่อยใน
ต่างๆจากในเลือดเป็นต้น

สรุป

นำไปสู่ Paul Langerhans ได้ค้นพบ islets cells
ในตับอย่างนี้เก่ากว่าปีมาแล้ว มากที่สุดของเซลล์
ที่เราเรียกว่า neuroendocrine บนปอดนั้นถูกค้นพบ
เพียงจำนวนน้อยๆ โดยอาจค้นพบซึ่งต่างๆ ไป
แต่ละชุดโดยผู้ค้นพบแต่ละคนไม่เหมือนกัน เช่นเรียกเป็น
argentaffin cells, argyrophilic cells หรือ Helle
Zelle ตลอดจนเป็น APUD cells, peptide-hormone-producing cells, หรือ paraneuron เป็นต้น.

ได้มีความพยายามที่จะให้คำนิยามและหา
คุณสมบัติที่แสดงว่ามันขึ้นชื่อของเซลล์เหล่านี้เพื่อที่จะ
สามารถรวบรวมจัดระบบให้เป็นหนึ่งชิ้นมา ทฤษฏีที่
สำคัญคือ APUD cells concept ของ Pearse และ
paraneuron ของ Fujita ซึ่งเป็นทฤษฎีที่มีผลต่อ
concept ในปัจจุบันนี้ Keith Langley ได้รวบรวมข้อมูล
ตั้งแต่ยุคต้นๆ ของปี 1970 เป็นต้นมาแล้วสรุปเป็น Cri-
teria ใหม่ชิ้นมา.

ในปัจจุบัน เซลล์เหล่านี้ได้ถูกรวบรวมจัดอยู่ใน
ระบบเดียวกันมาโดยเรียกว่า neuroendocrine cell sys-
tem โดยที่เซลล์ เหล่านี้กระจายอยู่ในที่ต่างๆ ทั่ว
ร่างกาย มันอาจอยู่รวมกันเป็นอวัยวะชั้นมากหรืออยู่
เป็นกลุ่มเซลล์เล็กๆ หรือเป็นเซลล์เดี่ยวที่อยู่อยู่
ระหว่างเซลล์ชนิดอื่นๆ ได้ แม้ว่ามันจะอยู่ในตำแหน่ง
ต่างๆ ทั่วร่างกายแต่ยังไม่ได้ถูกจัดอยู่ในระบบเดียวกัน
เนื่องจากมันถูกคุณสมบัติที่เหมือนกัน ได้มีการพิจารณาแล้ว
ว่าเซลล์เหล่านี้มีผู้มีได้มาเล่นกันมาจาก germ layers
เดียวกัน มันอาจจะกำหนดมาจาก germ layers ซึ่งใหม่
ก็ได้ แต่ที่สำคัญที่สุดคือ นี่เป็นรายชื่อวิทยาในที่ต่างๆ แล้วที่จะเป็น
neuroendocrine cells โปรแกรมนี้เกิดขึ้นโดยไม่มี
โทรทรรศการ ทราบว่า neuroendocrine cells ปัจจุบัน
นี้เนื่องในที่ๆ markers ของเซลล์ แต่ยังไม่มี markers ตัว
ไหนที่สามารถใช้เป็น absolute criteria สำหรับเซลล์
พวกนี้ได้ การศึกษาในอนาคตสามารถให้คำตอบ

อ้างอิง
1. Kloppel G, Heitz PU. Classification of normal
and neoplastic neuroendocrine cells. Ann
NY Acad Sci 1994 Sep 15; 733: 19-23
RS, Kumar V, Robbins SL, eds. Robbins
Pathologic Basis of Disease, edn5.
Philadelphia: W.B. Saunders, 1994:726-7
3. Andrew A. A study of the developmental
relationship between enterochromaffin cells
and the neural crest. J Embryol Exp
4. Fontaine J, Le Douarin NM. Analysis of
endoderm formation in the avian blastoderm
by the use of quail-chick chimaeras. The
problem of the neuroectodermal origin of
the cells of the APUD series. J Embryol
5. Capella C, Heitz PU, Hofier H, Solcia E,
Kloppel G. Revised classification of
neuroendocrine tumors of the lung, pancreas
and gut. Digestion 1994; 55 Suppl 3: 11-23
6. Delellis RA, Dayal Y. Neuroendocrine system.
In: Sternberg SS ed., Histology for
Pathologists. 1st ed New York : Raven
7. Bishop AE, Polak JM. Modern morphological
and other investigative methods. In: Polak
JM, ed. Diagnostic Histopathology of
Neuroendocrine Tumours. Edinburgh :
Churchill Lijingstone, 1993: 1-14
8. Langley K. The neuroendocrine concept today.
Ann NY Acad Sci 1994 Sep 15; 733: 1-17
9. Pearse AGE. The cytochemistry and
ultrastructure of polypeptide hormone-
producing cells of the APUD series and the
embryologic, physiologic and pathologic
implications of the concept. J Histochem
Cytochem 1969 May; 17(15):303-13

