
Granulocyte colony-stimulating factors (rhG-CSF) are involved in the production and maturation of bone marrow myeloid stem cells and progenitor cells. Advances in molecular biology and genetic engineering have now made recombinant human granulocyte colony-stimulating factor (rhG-CSF) available to clinicians in sufficient quantities to be used in clinical oncology. Clinical studies with rhG-CSF in Chulalongkorn Hospital commenced in 1994 and have been undertaken in a variety of clinical setting including prophylaxis of chemotherapy-induced neutropenia and treatment of febrile neutropenia. This review examines the clinical evidence supporting the use of rhG-CSF in the management of different setting of cancer patients and summarizes our clinical and laboratory studies combining their administration with chemotherapy and in the treatment of chemotherapy-induced neutropenia. The potential impact of CSF therapy extends not only to the management and prevention of neutropenic sepsis, but also to the antineoplastic effects attainable by chemotherapeutic agents, whose therapeutic dose range is currently often limited by myelosuppression and the morbidity and mortality of neutropenic sepsis.

Key words: Granulocyte colony-stimulating factors, Chemotherapy-induced neutropenia, Febrile neutropenia.

Reprint request: Voravud N, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Received for publication. May 15, 1998.
การใช้ G-CSF ในผู้ป่วยมะเร็ง

อัตราการตอบสนองต่อการรักษา (response rate) ของผู้ป่วยมะเร็งที่ได้รับยีสต์มิคเบิตส์ซึ่งดูดซับปริมาณของยีสต์ที่ใช้ตอบสนองบาง (dose intensity)(1) ทำให้ยีสต์มิคเบิตส์ในระดับที่สูงและเตรียมความพร้อมการตอบสนองที่ดีสูงสุด แต่การให้ยีสต์มิคเบิตส์ในขนาดที่สูงอาจทำให้เกิดผลข้างเคียงที่สูงได้เช่นกัน ผลข้างเคียงที่สำคัญคือ การระคายเคือง الجهاز ต่อซิคคลอย่างถี่เมื่อเม็ดเลือดขาว neutrophil นอกจากนี้ อาจส่งเสริมให้เกิดการดื้อยาและเพิ่มอัตราการตายของผู้ป่วยจากผลกระทบของการดื้อยาที่รุนแรงในขนาดที่มาก เม็ดเลือดขาวในเลือดต่อ(2) การที่เม็ดเลือดขาวต่อกายสมดุลย์ที่ต่ำ(dose-limiting toxicity) ทำให้ไม่สามารถให้ได้ความตามความของการรักษาที่วัตถุประสงค์(3)


ผลของการแก้ไข gen glycosylation

ผู้ที่มี gen glycosylation มีผลต่อหน้าที่ของ cytokine ของ CSF หลายชนิด เช่น non-glycosylated erythropoietin มีประสิทธิภาพใกล้เคียงกับ glycosylated erythropoietin ในสองทดสอบ (in vitro) และมีทุกอย่างเช่น เมื่อใช้ในการทำลาย (in vivo) เนื่องจาก non-glycosylated erythropoietin ถูกทำลายได้เร็วกว่าชนิด glycosylated erythropoietin(5) สำหรับ glycosylated granulocyte-macrophage colony-stimulating factor (GM-CSF) มีรายงานว่าลดความสามารถในการจับรับ(6) และอาจมีผลทำให้ประสิทธิภาพลดลง

สำหรับ gen glycosylation คือ rhG-CSF นั้น พบว่าในชนิดที่แตกต่างกัน glycosylated rhG-CSF มีความคงทนมากกว่าnon-glycosylated rhG-CSF ในเลือด(7) และมีทุกอย่างมากกว่าเม็ดเลือดขาวในโครงสร้างเฉพาะตัวเซลล์ (in vitro colony cultures)(8) ซึ่งอาจเกิดจากการที่ความคงทนแตกต่างกันของ rhG-CSF ที่ผลิตแบบ ระหว่างการสร้างตัวเลือดในกระดูกสิ้นหวง อาจเนื่องจาก gen glycosylation ทำให้รักษาค่าผู้ป่วยมีเพิ่มขึ้นตามเวลาต่อ(9) ผลที่เกิดเม็ดเลือดขาว neutrophils ของ glycosylated rhG-CSF ดีกว่าชนิด non-glycosylated(10)

การศึกษาทางสถิติแบบ randomization เรียบเพื่อผลของยา rhG-CSF ที่มีชนิด glycosylated และ non-glycosylated ในขนาด 10 μg/กิโลกรัม/วัน จัดให้ทดลองในระยะมีผลบวก พบว่า glycosylated rhG-CSF มีทุกอย่างกว่าในการยืดหยุ่นขยาย (mobilization) ของเซลล์ด้วยอนุรักษ์ (stem cells)(11) ด้วยวิธี Watt และคณะ(12) ได้รายงานผลการศึกษาเปรียบเทียบการใช้ rhG-CSF ชนิด glycosylated และ
การใช้ยาที่ผู้สูงอายุแบบเรียบที่ได้ Filgrastim (Neupogen) ซึ่งพบร้อยละ 35 และอุบัติการณ์ของการรักษาใช้ร่วมกันมีผลต่อร่างกายเด็ก (febrile neutropenia) ในผู้ป่วยที่ได้ Filgrastim (Neupogen) ที่สำหรับร้อยละ 25 ในขณะที่ผู้ป่วยที่ได้ Lenograstim (Granocyte) พบเพียงร้อยละ 10.7 และระดับต่าสุดค่าของเม็ดเลือดขาว neutrophils ในผู้ที่ได้รับ Filgrastim (Neupogen) มีค่าเฉลี่ย 8800/mm³ (พิกัด 20-30,000/mm³) ส่วนระดับต่าสุดค่าของเม็ดเลือดขาว neutrophils ของผู้ที่ได้ Lenograstim (Granocyte) มีค่าเฉลี่ย 1215/mm³ (พิกัด 10-38,700/mm³) ข้อมูลดังกล่าวมีปีที่มีผลต่อการแปลผลหลายปีการ ได้แก่ ผู้ป่วยเริ่มเข้าพิจารณาก่อน ซักเข้นและขนาดของยาไม่เป็นไปตามที่ไม่เหมือนกัน รวมทั้งปัจจัยการพยายามเริ่มต้นต่างกัน การศึกษาแบบ prospecive randomized double-blind ในผู้ป่วยโรคมะเร็งชนิดต่างกัน และมีปัจจัยการ พยายามเริ่มต้นต่างกัน จึงจะทำให้การแปลผลข้อมูลที่ได้จากการศึกษาถูกต้องมุมมอง

สำหรับผลข้อมูลของยาrhG-CSFพบว่าชนิด non-glycosylated rhG-CSF (Neupogen) มีอาการปวดหลังเนื่องมากกว่าในปัจจุบันร้อยละ 32 ในขณะที่ชนิด glycosylated rhG-CSF (granocyte) คิดเป็นร้อยละ 20 ผลข้อมูลต่างกันมาก ในผู้ที่ได้ non-glycosylated rhG-CSF น่าจะเกิดเนื่อง นอกจากการที่ใช้ยาต่างสูงมากกว่าในการรักษาผู้ป่วย

ส่วนการเปรียบเทียบการระหว่างกลุ่มการรักษาด้วย rhG-CSF ที่เลือกชนิดในการรักษาผู้ป่วยมะเร็งที่เกิดขึ้นร่วม กับเนื่องด้วยผลร่างกายของยาrhG-CSF(46) อาจไม่สามารถสรุปได้แน่นอน เนื่องจากยังมีผู้ป่วยจำนวนมากไม่ สามารถโดยมีผู้ป่วย 40 ราย ได้รับ non-glycosylated rhG-CSF และเพียง 11 ราย ที่ได้รับ glycosylated rhG-CSF

สำหรับการวิเคราะห์ประสิทธิ์สามารถมีการใช้ hematopoietic colony-stimulating factors ทางคลินิก ในปีค.ศ. 1996(57) และมีการปรับปรุง
แก้ไขข้อบ่งชี้เพิ่มเติมของการใช้ยาดังกล่าว ในปี ค.ศ. 1996(14) ด้วยการขยายผลผลประโยชน์ดังนี้

1. Primary Prophylaxis CSF
การใช้ยา rhG-CSF ในการป้องกันการคัดลอกของเม็ดเลือดขาวในผู้ป่วยที่ได้รับยาheimie พบว่าสามารถลดอุบัติการณ์ของการมีไข้และเม็ดเลือดขาวต่ำ (febrile
neutropenia) ได้อย่างมีนัยสำคัญทางสถิติ ประมาณ ร้อยละ 50 จากการศึกษาแบบ randomized 3 รายการ ซึ่งรักษาผู้
ป่วยด้วยยาheimie ที่มีอุณหภูมิสูงกว่า 38 องศาเซลเซียส ตั้งแต่กลุ่มที่ได้รับยาheimie และกลุ่มที่ได้รับยาheimie แต่ไม่มีการใช้ rhG-CSF ซึ่ง
จึงแนะนำให้ใช้ rhG-CSF ป้องกันการเม็ดเลือดขาวต่ำจากยาheimie โดยเฉพาะเม็ดเลือดขาวต่ำจากยาheimie ที่มีอุบัติการณ์ของการเกิดภาวะมีไข้สูงกว่าร้อยละ 40 ในกลุ่มควบคุมที่ไม่ได้รับยา CSF ดังนั้น

2. Secondary Prophylaxis rhG-CSF
มีหลักฐานสนับสนุนการใช้ยา rhG-CSF เพื่อเพิ่ม
ภาวะไวรัสป้องกันภาวะเม็ดเลือดขาวต่ำจากยาheimie ที่มีประกอบด้วย
การใช้ยาheimie ต่อในบางกลุ่ม ทั้งที่มีการใช้ยาheimie แต่ไม่มีการใช้ยาheimie ที่มีในบางกลุ่ม

3. CSF Therapy
การศึกษาไม่มีข้อมูลสนับสนุนการใช้ CSF
ในการรักษาผู้ป่วยที่มีภาวะเสี่ยงต่ำจากยาheimie แต่ไม่มีข้อมูล

สำหรับการรักษาผู้ป่วยที่มีภาวะเสี่ยงต่ำจากยาheimie ที่มี
การศึกษาไม่มีข้อมูลสนับสนุนการใช้ CSF
ในการรักษาผู้ป่วยที่มีภาวะเสี่ยงต่ำจากยาheimie ที่มี
การศึกษาไม่มีข้อมูลสนับสนุนการใช้ CSF
ในการรักษาผู้ป่วยที่มีภาวะเสี่ยงต่ำจากยาheimie ที่มี
การศึกษาไม่มีข้อมูลสนับสนุนการใช้ CSF
ในการรักษาผู้ป่วยที่มีภาวะเสี่ยงต่ำจากยาheimie ที่มี
การใช้ rhG-CSF เพื่อเพิ่มขนาดความแข็งแรงของกระดูก

การใช้ rhG-CSF หลังจากได้ยกขันเป็นป้ายเพิ่ม
กับก้านการเม็ดเลือดขาวต่างหากเพื่อจะให้เกิดมีป้าย
ขนาดที่สูงขึ้นทั้งนี้ไม่มีข้อมูลทางสถิติเพียงพอที่สนับ
สนุนว่าการใช้ rhG-CSF วิธีที่ถูกต้องจะได้ประโยชน์กับ
ผู้ป่วยอย่างไรก็ตามการใช้มันจะอ่อนโยนในขนาด
ส่วนมากเพื่อกำการควบคุมโรคสามารถใช้ยาพาร์ส
rhG-CSF มีเอกภัยมีป้ายในผู้ป่วยหลังมีคุณค่าของการ
ผลกระทบขึ้นของใช้รวมกับมีคัดเลือดขาวมากกว่าหรือ
เท่ากับร้อยละ 40

การใช้ rhG-CSF ร่วมกับการปลูกกล้า Progenitor-Cell
rhG-CSF สามารถลดระยะเวลาที่มีเกิดเลือดขาวต่าง
และลดผลข้อยัดของอาการติดเชื้อในผู้ป่วยระยะที่ได้รับ
ยาамиป้ายขนาดสูงรวมกับการปลูกกล้ากระดูก (autolog-
eous bone marrow transplantation) ข้อมูลที่มีตามสนาน
ประโยชน์ของการใช้ rhG-CSF ในการเปลี่ยนไขกระดูก
แบบ allogeneic ด้วย แต่ได้ผลไม่ดีเท่าที่ได้ใช้ในผู้ป่วยที่
เปลี่ยนไขกระดูกแบบ autologous การใช้ rhG-CSF อีก
ประโยชน์ในการทำ peripheral-blood progenitor-cell
transplantation คือ ดังนั้น rhG-CSF จึงมีบทบาทในการช่วย
เพิ่มการติด (engraftment) ของเซลล์เม็ดเลือดขาวหลังการ
ปลูกกล้ากระดูกแอนด์ซีรีกระดูก โดยเฉพาะในเวลาที่มี
ความเหลื่อมข้อของกระดูก (engraftment) ของเซลล์ด้วยข้อมูล
ที่มีซึ่งจะพบว่า rhG-CSF มีประสิทธิภาพในการเกิดอัก
Peripheral blood progenitor cell สำหรับการปลูกกล้าด้วย
ของเม็ดเลือดขาว ดังนั้น จึงแนะนำให้ใช้ rhG-CSF ในการ
ปลูกกล้าเซลล์เม็ดเลือดขาวและไขกระดูก

6. การใช้ rhG-CSF ในผู้ป่วยระยะเรื้อรังเม็ดเลือดขาว

เป็นการใช้ rhG-CSF ผู้ป่วยระยะเรื้อรังเม็ดเลือดขาวโดยใช้
ยาamiป้ายได้ผ่านที่กับการศึกษาหลายงานที่พบ
การใช้ rhG-CSF ในผู้ป่วยระยะเรื้อรังเม็ดเลือดขาวหลังจักที่ได้
รับการรักษาด้วยยาамиป้าย (induction chemotherapy)
สามารถลดระยะเวลาที่มีเกิดเลือดขาวต่างหลังยาamiป้ายได้
ด้วยประโยชน์ไม่มีข้อมูลที่สูง ๆ ของ rhG-CSF ไม่ว่าจะเป็นการลด
ระยะเวลาหลังโรคกระชับของผู้ป่วย ผลดังกล่าวมีผลติดตามกัน
เช่น เพิ่มการกระตุ้นระบบต่ำขอนิรภัยมีป้าย และลดผล
ระยะยาวไม่มีทักษะในงานตรวจวิเคราะห์งานใน
ผู้ป่วยระยะเรื้อรังเม็ดเลือดขาวที่อยู่ในงาน เพื่อการใช้ rhG-CSF
สามารถลดระยะเวลาที่มีเกิดเลือดขาวต่างได้ รวมกับการ
ปลูกกล้าการติดเชื้อในงานรายงานเมื่อให้ rhG-CSF หลัง
จากผู้ป่วยได้รับ induction chemotherapy ครั้งแรก แต่ไม่
พบการเพิ่มขึ้นของอัตราการติดเชื้อแบบสน่มเบนส์
(complete remission) หรือติดการยุติภาวะที่ 2 ปี และ
ไม่พบว่ามีผลเสียในการใช้ rhG-CSF หลังจากผู้ป่วยระยะเรื้
อรังเม็ดเลือดขาวได้รับยาamiป้ายแบบ induction ครั้งแรก
ตามสมควรที่กระชับของประเทศชาติควรจะแนะ
ให้ใช้ rhG-CSF ได้หลังจากผู้ป่วยระยะเรื้อรังเม็ดเลือดขาวอยู่
กับหรือจน 55 ปี โดยให้หลังจากที่ผู้ป่วยได้รับยาamiป้าย
แบบ induction แล้ว ดังนั้นในศิลปะการ Predictor ที่มี
ผลผลิตของค่าเริ่มต้นในการใช้ rhG-CSF ในผู้ป่วยระยะเรื้อรัง
เม็ดเลือดขาว เช่น การใช้ rhG-CSF ก่อนหรือไม่รวมกับยาami
ป้ายเพื่อสังเกตการณ์เกิดขึ้นให้ข้อมูลที่จะช่วยให้
ทราบป้อนของค่าเริ่มต้นมีป้ายติดเชื้อในงานรายงานไม่แนะนำให้ใช้
ทั่วไป ควรใช้ในงานศึกษาวิจัยทางคลินิกเท่านั้น

VOL. 42 No. 7
July 1998
การให้สารประกอบเม็ดเลือดขาว ในการยุติระยะเรื้อรังสายคลำตา

(เรื่องประกอบเม็ดเลือดขาว)
ส่วนใน myelodysplastic syndrome ที่ rhG-CSF
สามารถเพิ่มปริมาณเม็ดเลือดขาวชนิด neutrophil ได้ในราย
ที่มีเม็ดเลือดขาวต่ำในไข้ จนแม้ไม่มีข้อมูลทางคลินิกที่
สนับสนุนการใช้ rhG-CSF ระยะยาวในผู้ป่วยเหล่านี้
ดังนั้นจึงควรพิจารณาให้ใช้ rhG-CSF เป็นครั้งคราวใน
ระยะเวลาที่ผู้ป่วยมีเม็ดเลือดขาวต่ำ และมีการคัดเชื้อถ่าย

7. การใช้ rhG-CSF ในผู้ป่วยมะเร็งที่ได้รับยาเมมเบรน

ในขณะนี้ไม่มีแนวทางให้ใช้ rhG-CSF ในผู้ป่วยที่ได้รับการรักษาด้วยยาเมมเบรนในภูมิคุ้มกันภูมิคุ้มกัน
โดยเฉพาะการรักษารวมที่รับประทานยา (medastinum)
เพราะ rhG-CSF จะทำให้เม็ดเลือดมีการแบ่งตัว มีเซลล์ตัว
อ่อนของเม็ดเลือดออกมากจากกระแสดูดและระบายเลือด
ลงไปตามกระแสเลือด ดังนั้น การยาแองผิป 
ตำแหน่งดังกล่าวจะทำลายเซลล์ตัวอ่อนของเม็ดเลือดที่ไว
cancer มากกว่าเซลล์ตัวอ่อนอื่น ๆ มิอาจทำให้เม็ดเลือดสูง
dี นอกเหนือจากผลสัมฤทธิ์เสริมที่เกิดจากเมมเบรนในการ
ทำลายเซลล์ตัวอ่อนของเม็ดเลือดตัวอ่อน

8. การใช้rhG-CSF ในผู้ป่วยมะเร็งต่ำ

ยังไม่มีข้อมูลที่แน่นอนในการใช้ rhG-CSF ใน
ผู้ป่วยมะเร็งต่ำ ดังนั้นข้อมูลน่าจะน่าจะใช้ rhG-CSF จึง
อนุมัติให้ใช้กับผู้ป่วยที่ได้รับอย่างไรก็ตามขนาดของ
rhG-CSF ที่เหมาะสมสำหรับสัตว์อาจไม่ทราบแน่นอน ดังนั้น
จึงต้องการข้อมูลเพิ่มเติมจากการศึกษาใช้ทางคลินิกทาง
การใช้ rhG-CSF ในผู้ป่วยมะเร็งต่ำ

สำหรับข้อมูลข้างต้นการใช้ rhG-CSF ในประเทศต่าง ๆ
ที่ยังมีผลต่อองค์การอาหารและยาของประเทศต่าง ๆ มี
ดังนี้

1. ประเทศสหรัฐอเมริกา และญี่ปุ่น (ตารางที่ 1)

1.1 ผลลัพธ์ของการคัดเชื้อของผู้ป่วยมะเร็ง


ตารางที่ 1 ข้อมูลของ Filgrastim ที่อนุมัติด้วยองค์การอาหารและยา

<table>
<thead>
<tr>
<th>ข้อมูลข้าง</th>
<th>ขนาด (มก/กิโลกรัม/วัน)</th>
<th>ประเทศอเมริกา</th>
<th>ประเทศญี่ปุ่น</th>
</tr>
</thead>
<tbody>
<tr>
<td>ป้องกันการระบาดของตัวจากยาเมมเบรน</td>
<td>5 มก/กิโลกรัม/วัน SC หรือ IV</td>
<td>5 มก/กิโลกรัม/วัน IV</td>
<td></td>
</tr>
<tr>
<td>การเปลี่ยนแปลง</td>
<td>10 มก/กิโลกรัม/วัน SC หรือ IV</td>
<td>10 มก/กิโลกรัม/วัน SC หรือ IV</td>
<td></td>
</tr>
<tr>
<td>Severe Chronic Neutropenia</td>
<td>5 มก/กิโลกรัม/วัน SC</td>
<td>5 มก/กิโลกรัม/วัน SC</td>
<td></td>
</tr>
<tr>
<td>Peripheral Blood Progenitor Cells Harvesting</td>
<td>10 มก/กิโลกรัม/วัน SC หรือ IV</td>
<td>10 มก/กิโลกรัม/วัน SC หรือ IV</td>
<td></td>
</tr>
</tbody>
</table>

ส่วนที่ 1: IV = intravenous administration
SC = subcutaneous administration
จำพวกที่ใช้คือ 10 μg/กิโลกรัม/วัน ฉีดให้กันหว่างหรือในยามเลือดต่ำ ให้ฉีดว่า absolute neutrophil count มากกว่า 1x10^9/ลิตร ติดต่อกัน 3 วัน ถ้า absolute neutrophil count กลับต่ำลงต่ำกว่า 1x10^9/ลิตร อีก ให้ฉีด CSF ใหม่จำนวน 5 μg/กิโลกรัม/วัน

1.3 การให้ rhG-CSF เพื่อเพิ่มภาวะเม็ดเลือดขาว ได้ ใช้ การคัดค้าน และแสดงในปากและคอ ในผู้ป่วยที่มีเม็ดเลือดขาวต่ำหรือวาระแรง

เริ่มต้นใช้ Filgrastimที่ขัณฑ์ 5-6 μg/กิโลกรัม/วันและปรับขัณฑ์ของการผลการตอบสนองร่างกายระดับของเม็ดเลือดขาวได้ 1.5-10x10^9/ลิตร

1.4 กระตุ้นการเคลื่อนย้าย (mobilization) เม็ดเลือดขาว (hematopoietin) ใช้ Filgrastimฉีด 10 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือด декабร หรือท้ายส่วนเลือด แบบต่อปิด เริ่มให้ rhG-CSF อย่างน้อย 4 วัน ภักดีการเก็บแยกเม็ดเลือดขาวข้าวเหนียว และให้ค่อยๆ เลือกให้กับแยกแยกเม็ดเลือดขาวข้าวเหนียว

2. ประเภทอาการอนุมัติให้ใช้ Filgrastim ในช่อง ป้องกันหน้าที่บวมของภาวะเม็ดเลือดขาวต่ำในผู้ป่วยโรคมะเร็จกันบางส่วน ขนาดที่ใช้คือ 1-4 μg/กิโลกรัม/วัน ฉีดเข้าได้ตัวหนึ่ง อาจต้องใช้ขนาด 300 μg/วัน เพื่อป้องกันภาวะเม็ดเลือดขาวต่ำ ปรับปรุงขนาดของเม็ดเลือดขาวระดับของ absolute neutrophil count ที่กำหนดขัณฑ์ประมาณ 2x10^9/ลิตร

ในยูโรญี่นุ่มมิให้ใช้ Lenograstim ซึ่งเป็น rhG-CSF ที่สร้างมาจากเซลล์รังไข่ของหญิง (Chinese Ovary Hamster cell line) หรือ Figrastimที่ได้มาจากแบคทีเรีย Escherichia coli ในช่องป้องกันภาวะเม็ดเลือดขาวต่ำจากสถาบันเป็นพิเศษและในการปลูกไข่กระดูก โดยใช้ขนาดของ rhG-CSF ที่เท่ากัน

3. ประเภทอาการอนุมัติให้ใช้ Lenograstim สำหรับป้องกันภาวะเม็ดเลือดขาวต่ำจากสมมิตปัญหาขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือด หรือ 2 μg/กิโลกรัม/วัน ฉีดให้กันหว่างหรือในยามเลือดต่ำ สามารถเปลี่ยนใจกระดูกใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำในเด็กและหญิงหญิง ในที่อยู่ดีเด็ก หรือผู้ที่มีโรคมะเร็จชนิด acute lymphoblastic leukemia และน่าจะให้ใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน หลังผ่าตัด หรือยาและที่มีปัญหาภาวะเม็ดเลือดขาวต่ำ สำหรับ myelodysplastic syndromes และ aplastic anemia ให้ใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำในที่อยู่ดีเด็ก severe chronic neutropenia ไม่ว่าจะเป็นชนิดที่เป็นมาตั้งแต่เกิด (congenital) หรือไม่ทราบสาเหตุ (idiopathic neutropenia) ใช้ Lenograstim ขนาด 2 μg/กิโลกรัม/วัน ฉีดเข้าได้ตัวหนึ่งหรือสองครั้งต่อวัน (ตาราง 2)

4. ประเทศที่ องค์การอาหารและยาอนุมัติให้ใช้ Lenograstim ในช่องป้องกันต่างๆ ต่อไปนี้ (ตาราง 2)

4.1 การป้องกันเม็ดเลือดขาวต่ำจากมะเร็จมีบวมในผู้ป่วยมะเร็จชนิด solid tumor ใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำ หรือ 2 μg/กิโลกรัม/วัน ฉีดเข้าได้ตัวหนึ่ง ส่วนมะเร็จเพิ่มเติมเม็ดเลือดขาวชนิด acute lymphoblastic leukemia (ALL) และ acute myelogenous leukemia (AML) ใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำ ทั้งในเด็กและหญิงหญิง

4.2 Myelodysplastic Syndrome (MDS) ใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำ

4.3 Aplastic Anemia ในผู้หญิงใช้ Lenograstim ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำ ส่วนในเด็กใช้ขนาด 5 μg/กิโลกรัม/วัน ฉีดเข้าส่วนเลือดต่ำ หรือ 2 μg/กิโลกรัม/วัน ฉีดเข้าได้ตัวหนึ่ง

4.4 Congenital or Idiopathic Neutropenia น่าจะนำไปใช้ Lenograstim ขนาด 2 μg/กิโลกรัม/วัน ฉีดเข้าได้ ตัวหนึ่ง หรือหลายครั้งต่อวัน
ตารางที่ 2. ข้อบ่งชี้ของการใช้ Lenograstim ที่ได้รับอนุมัติจากองค์การอาหารและยา

<table>
<thead>
<tr>
<th>ข้อบ่งชี้</th>
<th>ขนาด มูลค่าเอกสาร</th>
<th>ประเทศไทย</th>
<th>จูไห้</th>
<th>ผู้หญิง</th>
</tr>
</thead>
<tbody>
<tr>
<td>ภาวะเม็ดเลือดขาวต่ำจากยัดยีบัลปี</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Tumor</td>
<td>5 IV หรือ 2 SC&lt;sup&gt;a&lt;/sup&gt;</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>5 IV หรือ 2 SC&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 IV หรือ SC&lt;sup&gt;b&lt;/sup&gt;</td>
<td>-</td>
<td>2 IV หรือ SC&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>การเปลี่ยนแปลงชุดโรค</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Myelodysplastic Syndrome</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Aplastic Anemia</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-</td>
<td>5 IV&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Congenital/Idiopathic Neutropenia</td>
<td>2 IV หรือ SC&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-</td>
<td>2 IV หรือ SC&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Peripheral Blood Progenitor Cell Harvesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autologous PBPC</td>
<td>2-5 SC</td>
<td>5-10 SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allogeneic PBPC</td>
<td>7.5-10 SC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

เม็ดเลือดขาวต่ำ
จากการรักษาโรคไวรัสวิคตี้กั้นบานบัง (AIDS)
ในผู้ป่วยเด็กเชื้อไวรัสและโรคไวรัสวิคตี้กั้นบานบัง
- | - | 5 IV<sup>a</sup> |
- | - | 2 SC<sup>a</sup> |

<sup>a</sup> ผู้หญิง
<sup>b</sup> เด็ก
ตัวยนต์: IV = intravenous administration; SC = subcutaneous administration

การใช้ข้อมูลที่นิยามขึ้นในข้อบ่งชี้ขององค์การอาหารและยาผู้ป่วย 21-28 วันเมื่อมีการคัดกรองให้ร่างกายพื้นดวงจากผลลำดับเสียงของยาและเม็ดเลือดขาวต่ำจากการให้ยาเม็ดเลือดขาวต่ำเป็นถึง ที่สามารถผู้ป่วยแล้ว ด้วยการให้ยาเม็ดเลือดขาวต่ำในครั้งต่อไป กระจายอิ่มออกของยาในผู้ป่วยกับเพื่อนบ้านซึ่งเป็น

1. Prophylaxis of Chemotherapy-Induced Neutropenia ใช้ในการป้องกันภาวะ neutropenia โดยการให้รวมกันการให้ยาจะเป็นบริบท ซึ่งผู้ป่วยจะสามารถได้รับยาเม็ดเลือดขาวต่ำที่สูงพอ สามารถนับร่างกายตามระยะเวลาของการรักษาโดยไม่ต้องเปลี่ยนการให้ยาเม็ดเลือดขาว neutropenia ในภาวะร่างกายต่ำเม็ดเลือดขาว โดยทั่วไประยะเวลาของการให้ยาจะต้องไม่เกิน 21-28 วันเมื่อมีการคัดกรองให้ร่างกายพื้นดวงจากผลลำดับเสียงของยาและเม็ดเลือดขาวต่ำจากการให้ยาเม็ดเลือดขาวต่ำเป็นถึง ที่สามารถผู้ป่วยแล้ว ด้วยการให้ยาเม็ดเลือดขาวต่ำในครั้งต่อไป กระจายอิ่มออกของยาในผู้ป่วยกับเพื่อนบ้านซึ่งเป็น

2. ความต้องการของผู้ป่วยเรื่องการให้ยาโดยไม่ต้องสูง 21-28 วันเมื่อมีการคัดกรองให้ร่างกายพื้นดวงจากผลลำดับเสียงของยาและเม็ดเลือดขาวต่ำจากการให้ยาเม็ดเลือดขาวต่ำ เป็นถึง ที่สามารถผู้ป่วยแล้ว ด้วยการให้ยาเม็ดเลือดขาวต่ำในครั้งต่อไป กระจายอิ่มออกของยาในผู้ป่วยกับเพื่อนบ้านซึ่งเป็น

3. ความต้องการของผู้ป่วยเรื่องการให้ยาโดยไม่ต้องสูง 21-28 วันเมื่อมีการคัดกรองให้ร่างกายพื้นดวงจากผลลำดับเสียงของยาและเม็ดเลือดขาวต่ำจากการให้ยาเม็ดเลือดขาวต่ำ เป็นถึง ที่สามารถผู้ป่วยแล้ว ด้วยการให้ยาเม็ดเลือดขาวต่ำในครั้งต่อไป กระจายอิ่มออกของยาในผู้ป่วยกับเพื่อนบ้านซึ่งเป็น

4. ความต้องการของผู้ป่วยเรื่องการให้ยาโดยไม่ต้องสูง 21-28 วันเมื่อมีการคัดกรองให้ร่างกายพื้นดวงจากผลลำดับเสียงของยาและเม็ดเลือดขาวต่ำจากการให้ยาเม็ดเลือดขาวต่ำ เป็นถึง ที่สามารถผู้ป่วยแล้ว ด้วยการให้ยาเม็ดเลือดขาวต่ำในครั้งต่อไป กระจายอิ่มออกของยาในผู้ป่วยกับเพื่อนบ้านซึ่งเป็น

5. ความต้องการของผู้ป่วยเรื่องการให้ยาโดยไม่ต้องสูง 21-28 วันเมื่อมีการคัดกรองให้ร่างกายพื้นดวงจากผลลำดับเสียงของยาและเม็ดเลือดขาวต่ำจากการให้ยาเม็ดเลือดขาวต่ำ เป็นถึง ที่สามารถผู้ป่วยแล้ว ด้วยการให้ยาเม็ดเลือดขาวต่ำในครั้งต่อไป กระจายอิ่มออกของยาในผู้ป่วยกับเพื่อนบ้านซึ่งเป็น
ของผู้ป่วย เนื่องจากการคิดเชื่อมต่อกันทำให้เกิดการตัน
เปลืองเนื้อจากการรักษาด้วยยาปฏิวัติและการตัดออก
ในโรงพยาบาลและจะส่งผลต่อคุณภาพชีวิตของผู้ป่วยนอก
เหนือจากผลการตอบแทนของผลการรักษาที่อาจจะลดลง
เนื่องจากกลุ่มขนาดของยาที่มีผู้ป่วยติดตามว่า
การใช้ rhG-CSF แบบ prophylaxis อีกต่อเนื่อง
กับการใช้ข้อมูลเป็น 2 แบบคือ
1.1 Primary Prophylaxis คือการให้ร่วมกับ
การให้ยาเพื่อมีปัญหาในการรักษาฉันทะของผู้ป่วยเลย
ในรายที่มีโอกาสเกิดภาวะเม็ดเลือดขาว neutrophil ต่ำ
(neutropenia) สูงจากยาที่มีปัญหาติดตามการ
ทำงานของไขกระดูก (myelosuppressive agents) อย่าง
รุนแรง
1.2 การป้องกันกับการทุเรียน (Secondary Prophylaxis)
ให้ร่วมกับการให้ยาเพื่อมีปัญหาในผู้ที่มีการทุเรียนเวลาต่างๆ
เม็ดเลือดขาวในการรักษาหรือจะใช้เพื่อป้องกันการ
febrile neutropenia ในการรักษาครั้งต่อๆ ไป
2. การรักษาอาการไข้และเม็ดเลือดขาว neutrophil
t่ำ (febrile neutropenia) ใช้รักษาเมื่อเกิดภาวะ febrile
neutropenia แล้ว เพื่อเพิ่มร่างในการกระชับและควบคุม
รุนแรงที่มีเม็ดเลือดขาวต่ำ เนื่องจากโอกาสเกิดภาวะนี้จะ
ชั่วขณะเกิดภาวะเม็ดเลือดขาวต่ำ (neutropenia) จากการด้วยของ neutrophil
ในระยะเสียค่าทางประมาณ 100/mm³ และตัวเลขเลือดเนื้อ邑ะระยะ
เวลานานกว่า 3 สัปดาห์ อัตราการตายจากการคิดเชื่อจะสูง
ถึง 80% (22)
3. ใช้ในการเปลี่ยนไขกระดูก (bone marrow
transplantation) และการบำบัดเซลล์ภายนอกของเม็ดเลือด
(peripheral blood progenitor cell transplantation)

ประสบการณ์การใช้ G-CSF ของหน่วย Medical Oncology
โรงพยาบาลจุฬาลงกรณ์

การใช้ rhG-CSF ของหน่วย Medical Oncology
โรงพยาบาลจุฬาลงกรณ์ในช่วงคุณภาพ 2535 - ถูกประกาศ
2538 มีการใช้ rhG-CSF พัฒนา non-glycosylated rhG-CSF
(Filgrastim) และ glycosylated rhG-CSF (Lenograstim)
ซึ่งจะศึกษาการใช้ rhG-CSF ทั้ง 2 แบบคือ primary
prophylaxis (18) และ febrile neutropenia (18)

Primary prophylaxis จากการใช้ rhG-CSF ในผู้
ป่วยทั้งหมด 112 ราย (14) เป็นผู้ป่วยที่ได้ Filgrastim 41 ราย
และ Lenograstim 40 ราย ทั้งหมดนี้เป็นผู้ป่วยเรื้อรังที่
ได้รับยาเพื่อป้องกันเส้นยอดกล้าดูด (myelosuppressive
agent) ในแนวทางที่สูงใน course แรกของการรักษาคัดคลึงมี
ปัญหาติดตามมารวบรวมที่ 2.

rhG-CSF ชนิด Filgrastim ซึ่งบรรจุในฉีดฉีด
ละลายในขนาด 300 ㎍ ต่อ 1 มิลลิลิตรบรรจุ 300 และ
480 ㎍ โดยแบ่งเป็น 1 และ 2 ครั้ง และเชื้อจำนวน 5-10
ๆ เพื่อให้ไปถึงสำนักงาน ที่ Bênazem ซึ่งบรรจุใน
ยูแคนซ์ขนาดบรรจุบรรจุ 100 และ 250 mg โดยคลีนบริการ
ฉีดฉีดเป็นวันละ 1 ml ได้รับการทดสอบ โดยจะมีใน
ขนาด 2-5 mg /kg/วัน ทางชั้นได้ศึกษาเป็นกลุ่ม ระยะเวลา
ที่มีประมาณ 5-10 วัน สำหรับการใช้ rhG-CSF ทั้ง 2 ชนิด
หรือจุดนิยามที่วิเคราะห์ที่ระดับ จำนวนบันทึกผู้ป่วยของเม็ด
เลือดขาว neutrophil จากตัวคุม (absolute neutrophil count
(ANC) nadir) ซึ่งมักจะเกิดประมาณ 7-14 วัน กลางที่ได้รับ
ยาที่มีปัญหา

กล่าวๆ ผู้ป่วยทั้ง 81 ราย ในการศึกษามี ดัง
ทางที่ 3 ประกอบด้วยผู้ป่วยในระยะเริ่มต้นๆ โดยบริการ
ศึกษาเป็นกลุ่มชนิด ดังรายละเอียดในตารางที่ 4.

ผลของการใช้ rhG-CSF ดังตารางที่ 5 ซึ่งพบว่า
ผู้ป่วยที่ได้รับนมมีปัญหาและได้ rhG-CSF ร่วมด้วยทั้งหมด
192 cycles ถึงปรากฏอาการไข้และเม็ดเลือดขาวต่ำ febrile
neutropenia ทั้งหมด 36 ครั้ง (18.7%), นอกจากนี้ผู้ป่วย
ที่มีภาวะเม็ดเลือดขาวต่ำ (nadir) ที่ neuotrophil ต่ำกว่า 1,000/mm³ แต่ไม่ปรากฏ
ว่ามีไข้ในจำนวน 59 cycles (30%)
ตารางที่ 3. ลักษณะของผู้ป่วยในการศึกษา

<table>
<thead>
<tr>
<th>ลักษณะของผู้ป่วย</th>
<th>Filgrastim</th>
<th>Lenograstim</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>จำนวนครั้งที่ศึกษา</td>
<td>108</td>
<td>85</td>
<td>193</td>
</tr>
<tr>
<td>จำนวนผู้ป่วยที่ใช้ในการศึกษา</td>
<td>41</td>
<td>40</td>
<td>81</td>
</tr>
<tr>
<td>เพศ (ชาย: หญิง)</td>
<td>21:20</td>
<td>24:16</td>
<td>45:36</td>
</tr>
<tr>
<td>อายุเฉลี่ย (Median age)</td>
<td>54 (24-78)</td>
<td>51 (17-80)</td>
<td>52 (17-80)</td>
</tr>
</tbody>
</table>

ตารางที่ 4. โรคมะเร็งและชนิดของเคมีบำบัด

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>Chemotherapy regimens</th>
<th>No. of cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A*</td>
</tr>
<tr>
<td>Head and neck</td>
<td>Ifosfamide</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Carboplatin, Epirubicin, Bleomycin</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, 5FU</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, Epirubicin</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Carboplatin, 5FU</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Carboplatin, VP 16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>2</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>Carboplatin, VP 16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, VP 16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cyclophosphamide, VP 16, Vincristine</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cyclophosphamide, VO 16, Epirubicin</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, Epirubicin, Cyclophosphamide</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Taxol, Carboplatin</td>
<td>4</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Cyclophosphamied, Methotrexate, 5FU</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide, Mitoxantrone</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>16</td>
</tr>
<tr>
<td>Stomach</td>
<td>5FU, VP-16, Leucovorin</td>
<td>0</td>
</tr>
<tr>
<td>Pancrease</td>
<td>Carboplatin, Epirubicin, Leucovorin</td>
<td>0</td>
</tr>
<tr>
<td>Thymoma</td>
<td>Cisplatin, Epirubicin, Cyclophosphamide</td>
<td>0</td>
</tr>
<tr>
<td>Ovary</td>
<td>Ifosfamide</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>6</td>
</tr>
</tbody>
</table>
ตารางที่ 4. (ต่อ)

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>Chemotherapy regimens</th>
<th>No. of cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A*</td>
</tr>
<tr>
<td>Ovary</td>
<td>Ifosfamide</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>6</td>
</tr>
<tr>
<td>Unknown primary</td>
<td>Carboplatin, VP 16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>0</td>
</tr>
<tr>
<td>Germ cell</td>
<td>Cisplatin, VP 16, Bleomycin</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, VP 16, Ifosfamide</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, Vinblastin, Bleomycin, Methotrexate</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>VP 16, Cyclophosphamide, Daclacimycin</td>
<td>2</td>
</tr>
<tr>
<td>Choriocarcinoma</td>
<td>VP 16, Methotrexate, Cyclophosphamide,</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vincristine</td>
<td></td>
</tr>
<tr>
<td>Sarcoma</td>
<td>Ifosfamide, VP 16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide, Epirubicin</td>
<td>6</td>
</tr>
<tr>
<td>Prostate</td>
<td>Ifosfamide, Epirubicin</td>
<td>0</td>
</tr>
<tr>
<td>Bladder</td>
<td>Cisplatin, 5FU, Interferon</td>
<td>1</td>
</tr>
</tbody>
</table>

Note* Glycosylated rhG-CSF (Lenograstim)    ** Non-glycosylated rhG-CSF (Filgrastim)

ตารางที่ 5. ผลของการใช้ rhG-CSF เพื่อป้องกันภาวะเมื่องเลือดขาดจากภาวะให้เอนไซต์ในโรงพยาบาลจุฬาลงกรณ์

<table>
<thead>
<tr>
<th>Glycosylated rhG-CSF</th>
<th>Non-glycosylated rhG-CSF</th>
<th>รวม</th>
</tr>
</thead>
<tbody>
<tr>
<td>อุบัติการณ์ของภาวะเมื่องเลือดขาดสูง (Febrile neutropenia)</td>
<td>30(35%)</td>
<td>29(27%)</td>
</tr>
<tr>
<td>อุบัติการณ์ของภาวะเมื่องเลือดขาดสูง (Median absolute Granulocyte count (ANC) nadir)</td>
<td>9(10.7%)</td>
<td>27(25%)</td>
</tr>
<tr>
<td>ค่าเฉลี่ยระดับต่ำสุดของ Granulocyte</td>
<td>1,215(10-38,700)</td>
<td>800(20-30,000)</td>
</tr>
</tbody>
</table>

หมายเหตุ *ในกรณีผู้ป่วยที่เกิดภาวะเมื่องเลือดขาดสูงต่ำและมีใช้
เนื่องจากที่ได้รับการป้องกันภัยจาก rh-CSF prophylaxis จะเกิดภาวะเม็ดเลือดขาว neutrophil ต่ำ (neutropenia) แต่ไม่ใช่ปัจจัยที่น่าตระหนักถึงว่ามีการลดลงเนื่องจากระดับANC ต่ำ 960/mm³ ที่มีผลต่อการติดเชื้อทั้งนี้เป็นผลของ rhG-CSF นอกจากจะเพิ่มระดับของเม็ดเลือดขาว neutrophil แล้ว ยังเพิ่มความต้านทานต่อการติดเชื้อ neutrophil ทำให้การติดเชื้อในผู้ป่วยที่มีเม็ดเลือดขาวต่ำ เหล่านี้ลดลง

องค์การอินเตอร์เนชั่นแนล (องค์การอินเตอร์เนชั่นแนล) ในการศึกษาครั้งนี้มีผู้ป่วย 2 ราย (1%) ที่เนื่องจากจะได้รับ rh-CSF prophylaxis แต่ก็ต้องมีการป้องกันภัยจากการติดเชื้อในจนที่ระดับANC ต่ำ โดยเฉพาะ ANC ต่ำสุดในผู้ป่วย 2 รายมีค่า 86/mm³ และ 20/mm³ ในวันที่ 9 ของต่อมีบัค และเลือดขาวใน 4 และ 5 วันค่ามาหลังจากเกิดภาวะเม็ดเลือดขาวต่ำ

ตารางที่ 6. ผลข้างเคียงของการใช้ rhG-CSF Prophylaxis ในโรงพยาบาลจุฬาลงกรณ์

<table>
<thead>
<tr>
<th>Glycosylated rhC-CSF</th>
<th>Non-glycosylated rhG-CSF</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ป่วยระดุก</td>
<td>5(5.8%)</td>
<td>4(3.7%)</td>
</tr>
<tr>
<td>ป่วยลำเลียง</td>
<td>17(20%)</td>
<td>35(32%)</td>
</tr>
<tr>
<td>ใช้</td>
<td>3(3.5%)</td>
<td>5(4.6%)</td>
</tr>
<tr>
<td>ดื่มสิ่งหนึ่ง</td>
<td>-</td>
<td>2(1.8%)</td>
</tr>
</tbody>
</table>


เมื่อเปรียบเทียบกับรายงานการศึกษาอื่นๆ ผลข้างเคียงของ rh-G-CSF ได้รับการยอมรับของโรงพยาบาลจุฬาลงกรณ์ คือผลข้างเคียงแบบป่วยเม็ดเลือดขาวต่ำและระดับเลือดขาวอย่าง คิดเป็นร้อยละ 15-20[9-23]

การใช้ G-CSF วัตถุประสงค์ใช้เพื่อเพิ่มเม็ดเลือดขาวต่ำ (Febrile Neutropenia)

การศึกษาการใช้ rh-G-CSF ในผู้ป่วยที่เกิดภาวะไข้ และเม็ดเลือดขาว neutrophil ต่ำ (febrile neutropenia) พบชนิด Filgrastim และ Lenograstim[10] โดยค่าสูงสุดให้
ภาวะไข้และเม็ดเลือดขาวต่ำ (febrile neutropenia) คือ ผู้ป่วยที่มีไข้เกินกว่า 38°C และมี absolute neutrophil count (ANC) น้อยกว่า 1,000/mm³ ภายใน 72 ชั่วโมง หลังจากให้ยาaremบัต non-glycosylated rhG-CSF จะมีค่าในช่วง 5-10 μg/กิโลกรัม/คู่ วันและขนาด 2-5 μg/kg/day สำหรับ glycosylated rhG-CSF นั้นการใช้ได้ในวันแรก 1 ครั้ง ทุกวันต่อเนื่องจนถึงระดับเม็ดเลือดขาวขึ้นต่ำกว่า 10,000/mm³ ซึ่งเป็นระดับที่หักว่า ปกติในสภาวะปกติผู้ป่วยที่มีไข้ภูมิปัญญาต่ำ (thrombocytopenia) ร่วมด้วย โดยเบรดิคลีน น้อยกว่า 25,000/mm³ เพื่อไม่ให้เกิดปัญหาการเตี้ยในบริเวณที่.RequestParamขั้นต่ำ หายจากผิวเส้นใช้ rhG-CSF ทางหลอดเส้นดำ โดยผสมใน 5% D/W 20-50 cc ระยะนาน 30 นาที หรืออาจผสมด้วย human albumin ในปริมาณ 2 มิลลิกรัม ของ human albumin ค่อยมีอีกครั้ง ในการที่ Filgrastim เพื่อป้องกันการ

\[\text{ตารางที่ 7.} \quad \text{ลักษณะของผู้ป่วยระดับที่รักษาด้วยยาaremบัตและเป็นสาเหตุให้เกิดภาวะไข้และเม็ดเลือดขาวต่ำ (Febrile Neutropenia)}\]

<table>
<thead>
<tr>
<th>Characteristics of patients</th>
<th>Non glycosylated rhG-CSF</th>
<th>Glycolylated rhG-CSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>จำนวนผู้ป่วยที่ศึกษา</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>จำนวนครั้งของภาวะ febrile neutropenia ที่ศึกษา</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>เพศ</td>
<td>19:21</td>
<td>7:4</td>
</tr>
<tr>
<td>ชาย : หญิง</td>
<td>55</td>
<td>53</td>
</tr>
<tr>
<td>อายุ (Median age)</td>
<td>40-76</td>
<td>25-72</td>
</tr>
<tr>
<td>นายแรงร่วมกับเคมีบำบัด (concomittent chemoradiation)</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Mean Hematologic Prestudy value $x 10^9 \text{ M} / \text{L}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total WBC</td>
<td>0.85</td>
<td>1.1</td>
</tr>
<tr>
<td>Absolute granulocyte count</td>
<td>0.215(0.026-96)</td>
<td>0.545(0.090-94)</td>
</tr>
<tr>
<td>Platelet Count</td>
<td>139(16-495)</td>
<td>87(20-289)</td>
</tr>
</tbody>
</table>

**หมายเหตุ**

- การใช้ยาaremบัต นั้นการใช้ได้ในวันแรก 1 ครั้ง ทุกวันต่อเนื่องจนถึงระดับเม็ดเลือดขาวขึ้นต่ำกว่า 10,000/mm³ ซึ่งเป็นระดับที่หักว่า ปกติในสภาวะปกติผู้ป่วยที่มีไข้ภูมิปัญญาต่ำ (thrombocytopenia) ร่วมด้วย โดยเบรดิคลีน น้อยกว่า 25,000/mm³ เพื่อไม่ให้เกิดปัญหาการเตี้ยในบริเวณที่RequestParamขั้นต่ำ หายจากผิวเส้นใช้ rhG-CSF ทางหลอดเส้นดำ โดยผสมใน 5% D/W 20-50 cc ระยะนาน 30 นาที หรืออาจผสมด้วย human albumin ในปริมาณ 2 มิลลิกรัม ของ human albumin ค่อยมีอีกครั้ง ในการที่ Filgrastim เพื่อป้องกันการ
ตารางที่ 8  ชนิดของโรคมะเร็งและชนิดของเคมีบำบัด

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>Chemotherapy regimens</th>
<th>Non glycosylated rhG-CS</th>
<th>Glycosylated raG-CSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>Carboplatin, VP-16</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Epirubicin, Endoxan, VP-16</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, mitomycin C, Vincristine</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, VP-16</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Taxol</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>VP-16 oral</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Head and Neck</td>
<td>Cisplatin, Epirubicin</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, Epirubicin, Bleomycin</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Breast</td>
<td>5FU, Endoxan, Epirubicin</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5FU, Endoxan, Methotrexate</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5FU, Carboplatin,</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide, Mitoxantone</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Hepatoma and</td>
<td>Epirubicin</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Chorangio carcinoma</td>
<td>Chemoembolization (5FU, MMC)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stomach</td>
<td>5FU, VP-16, Leucovorin</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5FU, Cisplatin, Epirubicin, Leucovorin</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Colonrectal</td>
<td>5FU, Interferon</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5FU, Leucovorin</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, 5FU</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Germ cell</td>
<td>Cisplatin, VP-16, Bleomycin</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>Ifosfamide, VP-16</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide, Epirubicin</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide, Adriamycin, Vincristine, Cisplatin</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Methotrexate (high dose)</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Ovary</td>
<td>Ifosfamide</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Blader</td>
<td>Cisplatin, 5FU, Interferon</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5FU, Interferon</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>Taxol</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>
ตารางที่ 9. ผลการศึกษาการใช้ rhG-CSF ในผู้ป่วยที่เกิดภาวะไข้และมีเลือดคลาด (Febrile Neutropenia) ในการป้องกันจุกฉลาม

<table>
<thead>
<tr>
<th></th>
<th>Non glycosylated rhG-CSF</th>
<th>Glycosylated rhG-CSF</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic shock จากภาวะ febrile neutropenia</td>
<td>6(11.1%)</td>
<td>1(8.3%)</td>
<td>7(10.6%)</td>
</tr>
<tr>
<td>อัตราขาดจากการคิดชื่อ</td>
<td>4(7%)</td>
<td>1(8.3%)</td>
<td>5(7.5%)</td>
</tr>
<tr>
<td>ระยะเวลาผลสัมฤทธิ์ (วัน)</td>
<td>(median duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fever</td>
<td>4.5(1-35)</td>
<td>4.5(2.10)</td>
<td>4(1-35)</td>
</tr>
<tr>
<td>neutropenia (ANC&lt;1,000/mm³)</td>
<td>4(1-13)</td>
<td>4(2-8)</td>
<td>4(1-13)</td>
</tr>
<tr>
<td>Antibiotics treatment</td>
<td>8(2-32)</td>
<td>7.5(4.14)</td>
<td>8(2-32)</td>
</tr>
<tr>
<td>rhG-CSF treatment</td>
<td>5(1-18)</td>
<td>6(2-11)</td>
<td>5.5(1-17)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>10(2-35)</td>
<td>9(6-16)</td>
<td>10(2-35)</td>
</tr>
<tr>
<td>ระดับ granulocyte ต่ำสุด (AGC nadir)/mm³</td>
<td>180(20-950)</td>
<td>130(10-500)</td>
<td>175(10-950)</td>
</tr>
<tr>
<td>ความพบเชื้อที่เป็นสาเหตุ</td>
<td>25(46.3%)</td>
<td>3(25%)</td>
<td>28(42.4%)</td>
</tr>
</tbody>
</table>

rhG-CSF สามารถช่วยลดระยะเวลาที่มีเลือดคลาด ลดได้คือระยะเวลาเฉลี่ยประมาณ 4 วัน และระยะเวลาของ การใช้ยาปฏิชีวนะรายละกิจทำให้ระยะเวลาของการอยู่ในโรงพยาบาล (hospitalization) ลดน้อยลง ซึ่งทำให้ลดค่าใช้จ่ายลงและน่าจะเป็นประโยชน์ที่สำคัญ โดยทั่วไปอัตราของผู้ป่วยจะลดลง 10% แต่เมื่อเทียบกับการรักษาผู้ป่วยที่ไม่ใช้ rhG-CSF มีประโยชน์อย่างมีนัยสำคัญทางสถิติคือระยะเวลาที่หายจากการไข้และมีเลือดคลาด เหลือต้นสั้นลง (p=0.01) และระยะเวลาที่อยู่ในโรงพยาบาลต้นสั้นลง (p=0.02) แสดงว่า rhG-CSF ยิ่งช่วยให้ผู้ป่วยให้ช่วงการเลือดคลาดจากคลาดค่อนข้างมาก

ตารางที่ 10. ผลข้างเคียงของการใช้ rhG-CSF ในผู้ป่วยภาวะไข้และมีเลือดคลาด (Febrile Neutropenia)

<table>
<thead>
<tr>
<th>Toxicities</th>
<th>Grade (WHO)</th>
<th>Filgrastim (n=54)</th>
<th>Lenograstim (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปวดเมื่อย</td>
<td>I</td>
<td>10(18.5%)</td>
<td>2(16.6%)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4(7.4%)</td>
<td>0</td>
</tr>
<tr>
<td>ปวดกระดูก</td>
<td>I</td>
<td>4(7.4%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0</td>
<td>1(8.3%)</td>
</tr>
<tr>
<td>ฟันผื่นหนัง</td>
<td>I</td>
<td>1(1.8%)</td>
<td>0</td>
</tr>
</tbody>
</table>

1. ให้ในรายที่การให้ยาที่มีบัคเพียงพอห่างผลใน การรักษาหายขาด (cure intent)

2. ในรายที่ความรุนแรงของเม็ดบัค (dose intensity) ที่มีความสำคัญต่อการรักษา

3. เลือกให้ในผู้ป่วยที่ได้รับการรักษาแบบที่มี โอกาสเสี่ยงและความไม่เสี่ยงที่จะเกิดภาวะเม็ดเลือดขาว ตกต่ำสูง

4. ผู้ป่วยที่มีโอกาสสูงต่อการคัดเจ้าจากสาเหตุบาง อย่าง

5. ควรใช้ rhG-CSF ในระยะเวลานานและขนาดที่ เหมาะสม นั่นคือผลลัพธ์ของการให้พร้อมกับไม่มีบัค และใช้ในระยะเวลาที่สั้นที่สุดที่สามารถป้องกันภาวะ เม็ดเลือดขาวตกต่ำได้

ตารางที่ 11. คำชี้แจงของการใช้ rhG-CSF ในแต่ละประเภท (ราคาโดยยาโรงพยาบาลจุฬาลงกรณ์ในขณะที่ทำการศึกษา ปี พ.ศ. 2537)

<table>
<thead>
<tr>
<th>การใช้ยา</th>
<th>Filgrastim (บาท/ซูม)</th>
<th>Lenograstim (บาท/ซูม)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Prophylaxis</td>
<td>34,100-53,900</td>
<td>18,850-37,100</td>
</tr>
<tr>
<td>Secondary Prophylaxis</td>
<td>34,100-53,900</td>
<td>18,850-37,100</td>
</tr>
<tr>
<td>Treatment of Febrile Neutropenia</td>
<td>17,050-26,950</td>
<td>9,425-18,550</td>
</tr>
</tbody>
</table>
มีผลต่อการรักษา ทั้งหมดนี้จะต้องเกิดประโยชน์ต่อผู้ป่วยและสังคมได้มากกว่าคุ้มทุนที่เสียไปจริงหรือไม่ และเพื่อให้การจัดสรรทรัพยากรทางด้านสารสนเทศสูงสุดที่มีจัดเก็บไว้เป็นไปอย่างมีประสิทธิภาพ จึงต้องทำการศึกษาวิธีการรักษาและป้องกันอันตรายอันเกิดจากการที่เม็ดเลือดขาวกลับไปที่ได้ประโยชน์สูงสุดโดยเสียค่าใช้จ่ายน้อยที่สุดต่อไป

การศึกษาทางคลินิกผู้ป่วยที่ได้รับ rhG-CSF

หน่วย Medical Oncology คณะแพทยศาสตร์ คณะผู้วิจัยได้ทำการศึกษาการเปลี่ยนแปลงรูปแบบของเม็ดเลือดขาวของผู้ป่วยยังคงรักษาต่อๆ ที่ไม่ใช่มะเร็งเม็ดเลือดขาว ที่ได้รับยา rhG-CSF เพื่อป้องกันการระบาดของเม็ดเลือดขาว ที่ได้รับยา rhG-CSF เพื่อป้องกันการระบาดของเม็ดเลือดขาว neutrophil ในระยะต่างๆ ของการวินิจฉัยการของเซลล์ myelocytes metamyelocytes bands และ segmented neutrophils ในผู้ป่วยที่ได้รับ rhG-CSF เพื่อป้องกันการระบาดของเม็ดเลือดขาวต่อกายภูมิป้องกัน (primary prophylaxis) ที่ไม่เกิดขึ้น 2, 6, 24 และ 45 ตามลำดับ (รูปที่ 1) และในผู้ป่วยที่ได้รับ rhG-CSF เพื่อป้องกันการระบาด.

รูปที่ 1. ผลกระทบการฉีด rhG-CSF แบบ primary prophylaxis ต่อเซลล์เม็ดเลือดภูมิคุ้มกันระหว่างและหลังการฉีดยา

ดุลยกรรมฆ่าเกิดขึ้นได้รวมถึงภัยคุกคามวิชวิชาศาสตร์ขั้นสูง ศึกษาทางคลินิกผิวภูมิคุ้มกันผลการเปลี่ยนแปลงที่เกิดขึ้นในเม็ดเลือดของผู้ป่วยมะเร็งของโรงพยาบาลดุลยกรรมที่ได้รับยา rhG-CSF การศึกษาพารามิเตอร์ที่เปลี่ยนแปลงของเม็ดเลือดขาวให้เป็นผลจากการฉีดยา rhG-CSF ต่อผู้ป่วยมะเร็งที่ได้รับการรักษาด้วยยาเม็ดภูมิป้องกัน และได้รับ rhG-CSF เพื่อป้องกันการระบาดของเซลล์ภูมิป้องกันตัวภูมิคุ้มกันต่างๆ เจอกันได้ต่อไปนี้

1. ผลต่อรูปของเม็ดเลือดขาว

ช่วงแรกยาภูมิป้องกันที่ทำให้เกิดขึ้นมากกว่า 38° ต่อกองภูมิคุ้มกัน neutrophils มีอยู่ถึง 0.50 x 10⁹/ลิตร (secondary prophylaxis) จากยาภูมิป้องกัน ทำให้เกิด 0,6, 18 และ 12 ตามลำดับ (รูปที่ 2) พบว่าเม็ดเลือดขาวระยะ myelocytes เป็นระยะต่อเนื่องของเม็ดเลือดขาว neutrophil ที่สุดที่ตรวจพบด้วยทักษะของผู้ตรวจการตรวจวิเคราะห์ผลิตภัณฑ์ภูมิคุ้มกันมีความไวในตรวจหาเม็ดเลือดขาว neutrophils ระยะต่อเนื่องเกิดขึ้นราว 100 โดยไม่พบผลลบต่าง (false negative) แต่พบผลลบต่าง
(false positive) ของการตรวจวิจัยถึง 23 และพบความ จำเฉพาะของการตรวจ (specificity) ร้อยละ 54.8

2. ผลคัดออกในชื่อalkaline phosphatase (30)

คณาจารย์ได้ศึกษาผลของ rhG-CSF ในผู้ป่วย มะเร็งเนื้องอกต่าง ๆ ที่ไม่ใช่มะเร็งเม็ดเลือดขาว พบว่าระดับ ของเอ็นไซม์ได้ตกอยู่ในระดับปกติ Teshima (31) และ Sato (32) พบว่า ระดับเอ็นไซม์ alkaline phosphatase ขึ้นอยู่กับขนาดของ rhG-CSF ที่ใช้ ดังนั้นแสดงว่า Figrastim ขนาด 5 mg/kg กลับ ร่วมกัน หรือ Lenogristim ขนาด 2 mg/kg กลับร่วมกัน ซึ่งเป็น ขนาดที่ใช้ก้าวไปในประเทศไทยในการชักกล้าและเกิด เลือดขาวจากยีนไขมีปัญหา ดังนั้นไม่มีผลทำให้ระดับการ เพิ่มขึ้นของเอ็นไซม์ได้กล่าว

ผู้ป่วยมะเร็งที่ได้รับ rhG-CSF จะมีการเพิ่มของ เฉลิมตัวอย่างของเม็ดเลือดขาว neutrophils และในการที่ได้ รับ granulocyte-macrophage colony-stimulating factor จะกระตุ้นการสร้างเซลล์ต่ออย่างของเม็ดเลือดขาวทั้งชนิด neutrophil และ monocyte/macrophage ในกลไกหลังจะมี สลักและรูปที่ตรวจวัดได้จากกระเพาะในกลีบปฏิกิริยา leukemoid และโรคมาเร็งเม็ดเลือดขาว โดยเฉพาะ ในชนิดที่เรียกว่า chronic myelogenous leukemia (CML) (33) วิธี}

หนึ่งที่อาจช่วยในการวิเคราะห์โรคได้คือ การตรวจระดับ ของเอ็นไซม์ alkaline phosphatase ระดับ leucocyte alkaline phosphatase จะปกติหรือเพิ่มขึ้นในปฏิกิริยา leukemoid ส่วนในโรคมะเร็ง CML จะมีระดับเอ็นไซม์ปกติ สำหรับผล การศึกษาในโรงพยาบาลจุฬาลงกรณ์ได้กล่าวถึงดังนี้ พบว่า ขนาดของ rhG-CSF ที่ใช้ในผู้ป่วยไม่มีผลต่อระดับเอ็นไซม์ leucocyte alkaline phosphatase (30)

3. ผลคัดออกในชื่อ myeloperoxidase (40)

คณาจารย์ได้ศึกษาผลของ rhG-CSF คือหนึ่งที่ของ เม็ดเลือดขาว โดยวัดค่าของเอ็นไซม์ myeloperoxidase ด้วย flow cytometry blood automizer เป็นดีไซน์ mean peroxidase index (MPXI) ในผู้ป่วยมะเร็ง 15 รายที่ไม่ใช่ มะเร็งเม็ดเลือดขาว ที่ได้รับการรักษา rhG-CSF ถึงกับการ ตกค่าของมีเลือดขาวเหลืองได้รับภาพผ่าบั้บ จากการศึกษา พบว่าเมื่อรับ rhG-CSF สามารถกระตุ้นให้มีการสร้างเม็ดเลือด ขาวเพิ่มขึ้นได้ 15 ค่าระดับเลือก MPXI เพิ่มขึ้นจากระดับ ก่อนรักษา rhG-CSF เท่ากับ 1.1 (±2.8) ก่อนเป็น 6.5 (±6.8) p < 0.05 และพบว่าค่า MPXI เพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติในกลุ่มที่ได้ rhG-CSF แบบ primary prophylaxis มากกว่าการให้แบบ secondary prophylaxis (รูปที่ 3) การเพิ่มขึ้น ของระดับเอ็นไซม์ MPXI และปริมาณเม็ดเลือดขาว
รูปที่ 3. การเปลี่ยนแปลงของค่า myelo peroxidase index (MPXI) ในผู้ป่วยที่ได้รับยา rhG-CSF

เนื้อหา:
 neutrophil จากการคิดยา rhG-CSF อาจเป็น biomarker ซึ่งใช้วัดประสิทธิภาพของการรักษาด้วย rhG-CSF
ความรู้จักวิวัฒนาการซึ่งขึ้นอยู่กับลู่ขนานกับรูปแบบการตอบสนองร่างกายของกลุ่มผู้ป่วย คุณภาพชีวิต และความรู้สึกต่อการทรมาน การดูแลรักษาที่มีการผูกผันผูกกับการรักษาเป็น เมื่อเสียด้วย hospitalization หรือ hematopoietic growth factors ชนิดต่าง ๆ และ genes ที่ควบคุม ทำให้สามารถผลิตสาร เหล่านี้ในปริมาณที่มากเพียงพอที่จะใช้เป็นยาในการรักษาได้ใน ปัจจุบันนี้ นอกจากนี้ยังมีวิธีการรักษาผู้ป่วยรายบุคคล ที่มีภาวะเม็ดเลือดขาวต่ำ ด้วย erythropoietin ซึ่งเป็น growth factor ที่ทำหน้าที่กระตุ้นการสร้างเม็ดเลือดแดง ใช้รักษาภาวะโรคที่มาจากยาที่มีผล ผู้ป่วยรายบุคคล รักษาภาวะโรคในผู้ป่วยรายบุคคล ผู้ป่วยโรคติดเชื้อ AIDS และผู้ป่วยโรคติดเชื้อหุ้นกับพยาธิ (AIDS) ในอนาคตอันใกล้ นี้จะมีการเร่งเร้าการสร้างเม็ดเลือดที่เร็วกว่า thrombopoietin ซึ่งในขณะนี้อยู่ในระหว่างการศึกษาวิจัยในมนุษย์ ประสิทธิภาพและผลข้างเคียงของยาที่ดีกว่า ผู้ป่วยรายบุคคล จำนวนไม่น้อยก็ยังคงมีการคิดเลือดต่ำจากยาที่มีปัญหาหรือจากสาเหตุอื่น ๆ ทำให้ไม่สามารถใช้ยาป้องกันได้ การมี หลายตัวเลือกวิธีที่ให้แพทย์ผู้รักษามีความสะดวกมากขึ้นในการดูแลรักษาผู้ป่วยที่มีปัญหาเรื่องเม็ดเลือดต่ำ ตลอดจน สามารถให้ยาที่มีมานั้นในขนาดที่เหมาะสมกว่าใน ผู้ป่วยแต่ละราย และสามารถบังคับการคัดคลึงและลดข้างเคียงของยาที่มีปัญหาได้กระจายต่ำ ที่ผลิตถึงต่ำของการรักษาโรคนั้นจะมีผลต่อการใช้ growth factors ร่วมกับยาที่มี บัคและมียากัน ๆ ที่มีประสิทธิภำกในการรักษาระบบมีขนาดใหญ่ อาจช่วยให้การรักษาโรคเม็ดเลือดต่ำ ผู้ป่วยดูแลการระคับในระหว่างการรักษา และอาจส่งผลให้การรักษาระดับชีวิตคีสมีการเพิ่มขึ้นจากโรคระคับหลังการรักษาผู้ป่วยที่ได้รับยา rhG-CSF


10. Kishita M, Motojima H, Oh-edo M, Kojima T,


33. Sato N, Mori M, Oshimura M, Ueyama Y, Miwa

T, Ohsawa N, Kasaka K, Asano S. Factor(s) responsible for the increase in alkaline phosphatase activity of postmitotic granulocyte from normal individuals and patients with chronic myeloid leukemia. Blood 1982 Jan;59(1):141-7