The diagnosis of melioidosis can be established by isolation and identification of the etiologic agent for confirmation diagnosis but it is time consuming (3 days) and requires experience in recovery and recognition. Immunological methods are available to develop laboratory diagnosis of melioidosis, and correlation with symptoms has been reported in one day.

In this study we attempted to find appropriate antigens that are more sensitive and specific to Burkholderia pseudomallei by indirect hemagglutination test for diagnosis melioidosis. Therefore, the appropriated antigen will prepared to IHA kit and we can distributed to hospital.

National Institute of Health, Department of Medical Sciences.

Comparative study of diagnostic tests.

70 sera samples were obtained from bacteriologically confirmed melioidosis patients (B.pseudomallei) admitted to Sapprasitiprasong Hospital, Ubonratchatani and 54 sera samples were collected from healthy blood donors as negative serum control. An additional 55 sera that samples were obtained from patients with other bacterial infections as negative serum control.

* สถาบันวิจัยวิทยาศาสตร์สาธารณสุข (NIH) กรมวิทยาศาสตร์การแพทย์
Methods: All samples were examined by indirect hemagglutination test (IHA) using of 3 types of antigen, melioidin, extracellular protein, and lipopolysaccharide. We used a cut-off point by receiver operating characteristic (ROC). Diagnostic tests calculated sensitivity, specificity, accuracy, and positive and negative predictive values.

Results: The suitable cut off values of IHA titer were $\geq 1:160$, $\geq 1:80$, and $\geq 1:80$, respectively. The melioidin statistics were sensitivity 84.28 %, specificity 93.27 %, accuracy 89.65 %, positive predictive value 89.39 %, and negative predictive value 89.81 %. For extracellular proteins they were sensitivity 88.57 %, specificity 93.27 %, accuracy 91.4 %, positive predictive value 89.9 % and negative predictive value 92.4 %. For lipopolysaccharide they were sensitivity 81.43 %, specificity 97.12 %, accuracy 90.80 %, positive predictive value 95.00 % and negative predictive value 88.60 %.

Conclusions: In this study, judging from ROC analysis, the suitable cut off values of IHA titer of melioidin, extracellular protein, and lipopolysaccharide were $\geq 1:160$, $\geq 1:80$, and $\geq 1:80$, respectively. The extracellular protein gave more positive results (88.57 %) and higher sensitivity (88.57 %) than the other tests for melioidosis while the lipopolysaccharide showed the highest specificity (97.12 %) and lowest cross reactivity with other infectious diseases. Lipopolysaccharide preparation give low yield and it is not suitable when coated with sheep red blood cells. Therefore, the extracellular protein is more suitable for preparation of IHA kits than the other antigens.

Keywords: Melioidosis, Indirect heamagglutination test.

Reprint request: Wangroongsarb P, National Institute of Health (NIH) Department of Medical Sciences, Nonthaburi Province 11000, Thailand.

Received for publication. May 12, 2000.
ปัจจุบัน: เนื่องจากการตรวจวินิจฉัยโรคเมลิโอสิสโดยสัตว์ห้องปฏิบัติการ โดยการพาแยกร่างกายของสัตว์ที่ให้ไข่แล้วด่องไข่ของสัตว์ในระยะห่าง 2-3 วัน โดยทั่วไปผู้ป่วยมักจะเสียชีวิตภายใน 48 ชั่วโมง ดังนั้นการวินิจฉัยโรคทางภูมิคุ้มกันวิทยา จะช่วยในการวินิจฉัยโรคเบื้องต้นต่อต้านการต่างของผู้ป่วยใช้วิธีในการรักษาเริ่มใน 1 วัน

วัตถุประสงค์: การศึกษาครั้งนี้เพื่อเลือกแอนติเดินค์ที่เหมาะสมในการตรวจหาแอนติเดินค์ต่อ Burkholderia pseudomallei ที่มีความไวและจากที่เทียบใช้ในการวินิจฉัยโรคเมลิโอสิสโดยสัตว์ Indirect hemagglutination test และเพื่อจะนำมาพัฒนาเป็นชุดทดสอบ ซึ่งสามารถนำไปใช้ในห้องปฏิบัติการต่าง ๆ ไป

สถานที่ทำการศึกษา: สถาบันวิจัยวิทยาศาสตร์ระดับสูง กรมวิทยาศาสตร์การแพทย์

รูปแบบการวิจัย: เปรียบเทียบการตรวจวินิจฉัยโรคเมลิโอสิสโดยสัตว์ทางห้องปฏิบัติการ

ผู้ป่วยที่ทำการศึกษา: ผู้ป่วยที่นำมาทำการทดสอบแอนติเดินค์เป็นผู้ป่วยโรคเมลิโอสิส(Melioidosis) ที่มารับการรักษาที่โรงพยาบาลสมรภูมิวิทยาศาสตร์อุสุรธานี ได้ทำการแยกเข้าจากผู้ป่วยผู้ป่วย Burkholderia pseudomallei จำนวน 70 ราย ผู้ป่วยที่มีโรคเมลิโอสิสที่มาจากผู้ป่วยวาร์ร่า จำนวน 54 ราย และผู้ป่วยที่มีการรักษาโรคเมลิโอสิสที่ไม่มีโรคเมลิโอสิสแต่ยังมีอาการคล้ายคลึงกัน (other infectious disease) จำนวน 55 ราย

วิธีการศึกษา: ตรวจวินิจฉัยโรคโดยการตรวจหาแอนติเดินค์โดยวิธี Indirect hemagglutination test (IHA) ประกอบด้วยแอนติเดินค์ 3 แบบ คือเป็น melioidin, extracellular protein (EXP) และ lipopolysaccharide (LPS) นำข้อมูลที่ได้จาก การศึกษามาคำนวณหาค่า cut off point ตัวชี้วัด receiver operating characteristic และประเมินทางสถิติคุณภาพการหาค่า sensitivity, specificity, accuracy, positive และ negative predictive value
ผลการศึกษา: พบว่าระดับแอนติบอดี้เอกตร์ต่อแอนติเจน 3 แบบคลอ melioidin, extracellular protein และ lipopolysaccharide มีค่าหน้าตาแอนติบอดี้เอกตร์ที่สูงเป็น significant cut off titer ที่ $\geq 1:160$, $\geq 1:80$, และ $\geq 1:80$ ตามลำดับการประเมินผลกระทบของความไว (sensitivity) 84.28 %, ความจำจ้าขาว (specificity) 93.27 % ความแม่นยำ (accuracy) 89.65 %, positive predictive value 89.39 % และ negative predictive value 89.81 % การประเมินผลกระทบของ extracellular protein พบว่าค่าค่วนวัดผลของความไว (sensitivity) 88.57 % ความจำจ้าขาว (specificity) 93.27 % ความแม่นยำ (accuracy) 91.4 % positive predictive value 89.9 % และ negative predictive value 92.4 % การประเมินผลกระทบของ lipopolysaccharide พบว่าค่าค่วนวัดผลของความไว (sensitivity) 81.43 % ความจำจ้าขาว (specificity) 97.12 % ความแม่นยำ (accuracy) 90.80 % positive predictive value 95.00 % และ negative predictive value 88.60 %

วิจารณ์และสรุป: จากการศึกษาครั้งนี้พบว่าแอนติเจนชนิด extracellular protein ให้ผลที่ดีมากที่สุด (88.57 %) และมีความไวมากที่สุด (88.57 %) แต่ค่าจำจ้าขาวน้อยกว่าแอนติเจนชนิด lipopolysaccharide (97.12 %) แอนติเจนชนิด lipopolysaccharide มีปฏิกิริยาข้ามกลุ่มกับโรคอื่นๆน้อยมากแต่การเตรียม lipopolysaccharide มีข้อจำกัดที่เครื้องมือครั้งละน้อยมากซึ่งในการใช้แอนติเจนชนิดนี้ต้องเตรียมเองขณะที่จะนำไปใช้งานที่ต้องการเตรียมในบริบทมาก ส่วน melioidin มีปฏิกิริยาข้ามกลุ่มกับโรคมาก ดังนั้นการนำไป extracellular protein มาเตรียมน้ำยา IHA kit เหมาะสมมากกว่าแอนติเจนชนิดอื่น

คำสำคัญ: melioidin, ติดโรค เร็ว ติดแอนติเจนชนิดอื่น
Melioidosis สาเหตุจากเชื้อ Burkholderia pseudomallei (1) ซึ่งนั้นจะทำให้เกิดและน่ามีความนาน ทาน sistematicxfordต้องให้เป็นเวลานาน เป็นโรคเฉพาะคนในเขตเดือนเดือน 1-2 โดยเป็นโรคที่ช่วยกินในระบบทางเดินหายใจ อาการของโรคจะรุนแรงเมื่อผู้ป่วยมีโรคซินร่วมด้วย เช่น ม้าปาก ไต หรือได้รับสภาวะ steroidเป็นเวลานาน ทำให้มีสัดส่วนของการอักเสบต่ำ (3) 기타ตรวจวินิจฉัยโรคทางห้องปฏิบัติการ โดยการ เ potràแยกเชื้อจากสิ่งล้างตรวจเช่น เลือด หูหนวก สมอง และ ปัสสาวะ ซึ่งให้ผลที่แน่นอน แต่ต้องใช้เวลาในการรายงาน ผลมากกว่า 2-3 วันนักที่ไม่รู้โรคมักจะเสียชีวิตภายใน 48 ชั่วโมงส่งผลในการวินิจฉัยโรคทางภูมิคุ้มกันวิทยาจะช่วยในการวินิจฉัยโรคเบื้องต้นร่วมกับอาการของผู้ป่วยให้ เวลาในการรายงานผลลดลงใน 1 วัน (4, 5) วิธีที่นิยมนำมาใช้ ในห้องปฏิบัติการที่มีที่พูดครั้ง Indirect hemagglutination test (IHA) โดยใช้ปฏีนตู่ ma micoated บนมือเคลื่อน แดง (6, 7) ส่วนวิธี indirect immunofluorescent antibody technique (IFA) และ enzyme linked immunosorbent assay (ELISA) มีความไวและความจำเพาะดีกว่าวิธี IHA และสามารถตรวจจาก IgG และ IgM แต่ต่อต้อง B. pseudomallei แต่ยังนั้นจากในการใช้งานเฉพาะต้อง ใช้จุลปุญญาในการตรวจความไม่สามารถท่าทางตรวจ วินิจฉัยในห้องปฏิบัติการที่ไร้

การศึกษาเรียบร้อยเป็นการตรวจวินิจฉัยโรค melioidosis โดยการตรวจหาแอนติเดียต่อเชื้อ B. pseudomallei โดยใช้แอนติเดีย 3 ชนิด ได้แก่ melioidin เป็นheat stable extracellular antigen (11), extracellular protein (EXP) เป็น partial purified extracellular antigen และ lipopolysaccharide (LPS) (12) เป็น endotoxin นำมาทดสอบ ทางห้องปฏิบัติการโดยวิธี IHA เพื่อหาค่า sensivity, specificity, accuracy, positive predictive value และ negative predictive value เพื่อเป็นแนวทางในการค้นหา แอนติเดียที่เหมาะสม และเพื่อจะนำมาพัฒนาเป็นชุดทดสอบที่ใช้วิคัยวินิจฉัยโรคเมลิโอไดส์ ซึ่งสำหรับนักใช้ประโยชน์ในห้องปฏิบัติการทั่ว ๆ ไป

วัสดุและวิธีการ

dตลอดช่วงที่สั้น

ซึ่งมีที่ใช้ในการศึกษาทั้งหมด เบื้องต้นที่แตก มาตาม 2539 ถึง 2540 แบ่งเป็น 3 กลุ่มดังนี้ กลุ่มผู้ป่วยโรคเมลิโอไดส์ที่มีผลการหารือเชื่อม พบ B. pseudomallei (Melioidosis) จำนวน 70 ราย กลุ่มผู้ป่วยโรคดื้อชื้นอื่น (Other infectious diseases) จำนวน 55 ราย ประกอบด้วยผู้ป่วยที่ได้จากผูป่วย ติดเชื้อ Salmonella spp. จำนวน 20 ราย ผู้ป่วยคัน ขัดเที่ยวจำนวน 15 ราย ผู้ป่วยโรคหนูในจำนวน 10 ราย และผู้ป่วยโรคอื่นก็ดื้อชื้นจำนวน 10 ราย กลุ่มควบคุมกลุ่มที่ได้จากผู้มารับบริการคลินิกที่มีภูมิ ด้านในที่อยู่ (Healthy) จำนวน 54 ราย ซึ่งแผนที่เก็บไว้ ที่ -70 ºC ก่อนทำการทดสอบ

สายพันธุ์แบคทีเรีย

Burkholderia pseudomallei สายพันธุ์ UB16 เป็น สายพันธุ์ที่แยกได้จากผู้ป่วยโรคเมลิโอไดส์ซึ่งติดเชื้อ ตัวอย่างการติดเชื้อในกระเพาะเลือดอย่างเช่นเพลีย ได้นำ B. pseudomallei สายพันธุ์ Newmeade 3 ชนิด ที่ใช้ในการศึกษาที่คลินิก Melioidin, Extracellular protein (EXP) และ Lipopolysaccharide (LPS)

การเตรียมแอนติเดีย

Melioidin (1, 3, 14) เพาะเลี้ยงเชื้อ B. pseudomallei ที่ฎาได้เรียบร้อย ซึ่งแยกได้จากผู้ป่วยมีผลิตภัณฑ์ เบื้องต้นเสื้อผ้า blood agar ที่อุณหภูมิ 37°C นาน 24-48 ชั่วโมงแล้วจับนำไปเพาะ เสร็จใน glycerine broth เพื่อเตรียมแอนติเดีย โดยอบเชื้อด้วย การเชื่อมพลาสติกใช้ autoclave ที่ความดัน 15 บาร์ต่ำกว่าแรงดันที่อุณหภูมิ 121°C เป็นเวลา 15 นาที นำไปปั่นที่ 3000 รอบต่อ
นาทีนาน 1 ชั่วโมง เพื่อแยกเอา supernatant แล้วต้ม phenol ได้มีความเข้มข้น 0.5% โดยบริหารกระในได้ที่ 4°C

Extracellular protein (EXP)

เลี้ยงเชื้อ B. pseudomallei ในอาหารเหลว Modified Proskauer & Beck medium (MPB) 1 ลิตร
ในขนาดเล็กเชื้อขนาด 2 ลิตร ที่อุณหภูมิ 37°C เขย่าอย่างต่อเนื่องด้วยความเร็ว 150 รอบต่อนาที เป็นเวลา 4 วัน และ autoclave เพื่อฆ่าเชื้อ ปั๊มแยกเข้มข้นที่เสียออกจากรายการเล็กเชื้อแล้วจัดเก็บในอุณหภูมิที่ 4°C ด้วยแอมโมเนีย ข้าวโพดอ่อนด้วย 50% ปั๊มแยกเข้มข้นสูงที่ 30°C ต่อไปให้ด้ายน้ำลายเข้มข้นด้วยการทำ dialysis ใน cellulose tubing (MW. 12000-14000 dalton) ใน phosphate buffer saline (PBS) pH 7.2 และนำไปทำให้แห้งด้วยเครื่อง lyophilizer ที่อุณหภูมิ -20°C

Lipopoly saccharide (LPS)

เลือกเชื้อ B. pseudomallei บนอุณหภูมิ Tryptic Soy Agar (Difco, USA) ที่อุณหภูมิ 37°C เป็นเวลา 2 วัน ซูเปอร์คืออะไรและกระจายใน 0.9% 이러ลิสซิล ซึ่งมีส่วนผสมของ 1% ฟอร์มิเดทิอล วางไว้ที่อุณหภูมิให้เป็นเวลา 2 ชั่วโมง เพื่อฆ่าเชื้อ หลังจากปั่นแยกเข้มข้นและส่งต่อเนื่องถึง 3 ครั้งและลายเข้มข้นที่ 5 กรัม ในน้ำยาส้ม 50 มิลลิลิตร และแลกกับ LPS ด้วยวิธี Hot phenol water extraction ของ Westphal ขยายตัวเร็ว "B. pseudomallei" และ 90% phenol ใน water bath ที่อุณหภูมิ 68°C เป็นเวลา 5 นาที หลังจากนั้นสิ่ง 90% phenol ลงไปในเชื้อในปริมาณเท่ากัน เขย่าอย่างแรงเป็นเวลา 20 นาที ที่อุณหภูมิ 68°C ทำให้เป็นผลการเชื่อมในน้ำแข็งและเป็นแยกส่วนของ LPS ที่ 4000 รอบต่อนาที เป็นเวลา 20 นาที ดูดซับส่วนของ LPS ซึ่งละลายอยู่ในน้ำแข็งบนสุดออกและทำให้บริสุทธิ์ ด้วยการทำ dialysis ในน้ำยาส้ม ต่อจากนั้นแยก LPS ออกจากสารละลาย ด้วยการปั่นด้วยเครื่อง High speed centrifuge (BECKMAN L765, USA) ความเร็ว 30,000 รอบต่อนาที ที่อุณหภูมิ 4°C เป็นเวลา 4 ชั่วโมง จะได้ LPS เป็นตะกอนใส หลังจากนั้นจะแยกด้วยน้ำกลั่น 3 ครั้ง นำ LPS ที่ได้ไปทำให้แห้งด้วยเครื่อง lyophilizer เก็บไว้ที่อุณหภูมิ -20°C

การทดสอบด้วยวิธี IHA

โดยการเตรียมเม็ดเลือดแดงสารสี (sheep red blood cell, SRBC) เคลือบด้วย glutaraldehyde โดยเจาะเลือดเบาไว้ใน Alsever’s solution ในอัตราส่วน 1:1 เก็บไว้ที่ 4°C ด้างเนื้อเลือดแดงและละลายด้วย 0.85% Normal saline อย่างน้อย 2000 rpm ระบุตัวที่นาน 5 นาที บันดาล 3 ครั้ง นำเนื้อเลือดแดงและที่ล้างแล้วนำมาละลายใน PBS pH 7.2 ในอัตราส่วน 1:9 จากนั้นผลิต 2.5% glutaraldehyde ลงในสารละลาย SRBC ในอัตราส่วน 1:5 ผลิตให้ช้ากันโดยการเยี่ยมบนเครื่อง rotator ที่อุณหภูมิห้องเป็นเวลา 2 ชั่วโมง นำมาล้างลง 3 ครั้งด้วย PBS ถ่ายเยี่ยมเป็น 1%, 5% SRBC treated glutaraldehyde ใน PBS ที่มี 0.1% sodium azide (NaNO2) เก็บไว้ที่ 4°C

การเพิ่มเข้ม meliodin (1ml / ml), EXP(1g / ml) และ LPS (1g / ml) ด้วย PBS ในอัตราส่วนที่เหมาะสมที่ได้จากการทำ checker broad titration โดยการกรอง absorb ออกด้วยมิลลิลิตร 3 รอบ สั่น SRBC treated glutaraldehyde ในอัตราส่วน 1:1 ที่อุณหภูมิ 37°C เป็นเวลา 1 ชั่วโมง เขย่าทุก 15 นาที นำ SRBC ที่เคลือบด้วยดีเจลส่งมาล้างเพื่อส่ง 3 ครั้งด้วย PBS นา glutaraldehyde-treated packed SRBC มาเตรียมเป็น 0.5% SRBC coated meliodin, EXP และ LPS ใน PBS ที่มี 0.1% NaNO2 เก็บที่ 4°C การตรวจวัดหากระดับ absorb ด้วยวิธี IHA ทำโดยการ absorb ซีรีส์ปริมาตร 50 ในโคริเดทกับ 5% SRBC treated glutaraldehyde ปริมาตร 450 ในโคริเดทโลหะที่อุณหภูมิห้องนาน 30 นาที แล้วนำไปปักที่ 2000 รอบต่อนาที นาน 5 นาที และแยกเอา supernatant นำมาเข้ามิกซ์ด้วย diluent (0.15M PBS pH 7.2, 0.5% BSA, 0.1% NaNO3) ใน U type microtiter plate ปั่นด้วย 25 ในโคริเดทให้มีความเข้มกลับใน two-fold serial dilution เริ่มจาก 1: 20, 1:40....1: 10240
ตามล่าดับ และเตรียม 0.5 % SRBC coated melioidin, EXP, LPS, ปิเมทรีด 25 มิคริตริต ถัวเทียบรอยพระนารีตัวร่างทำ control positive serum และ control negative serum คู่กันไปด้วย คำนวณ liter ต่ำสุด ที่มีการเกาะกลุ่มของเนื้อเยื่อแดง (hemagglutination)

การประเมินผลทางสถิติ(17,19)

จากรูปที่ 1 ได้จากการคิดค่านำมาค่า Receiver operating characteristic (ROC) ซึ่งเป็นกราฟแสดงความสัมพันธ์ระหว่าง sensitivity หรือ true positive rate ต่อ false positive rate ที่เกณฑ์ตัดสินใจระดับต่าง ๆ ถ้าเกณฑ์ตัดสินใจที่สูงคือเกณฑ์ตัดสินใจที่อยู่ใกล้ 100 % sensitivity มากที่สุดและมีค่า false positive rate น้อยที่สุด(17) และการประเมินประสิทธิภาพการวินิจฉัยโรคประกอบด้วยค่าความไว (sensitivity) ความจำเป็น (specificity) ความแม่นยำ (accuracy) ค่าภาษากรอบ (positive predictive value) และค่าภาษากรอบ (negative predictive value)

ผลการทดลอง

ผลการตรวจจากระดับแอนติบอดีที่จำเพาะต่อ melioidin ด้วย Indirect hemagglutination test ในชีวหลุมผู้ป่วยโรคมะเร็งต่อตระกูลแอนติบอดีตัวเครื่องดังต่อไปนี้ <1:20-1:10240 กลุ่มผู้ป่วยโรคติดเชื้อซึ่งระดับแอนติบอดีตัวเครื่องดังต่อ <1:20-1:320 กลุ่มคนปกติระดับแอนติบอดีตัวเครื่องดังต่อ <1:20-1:320 คดังแสดงไปในรูปที่ 1 โดยมีเกณฑ์ตัดสินใจชื่องานงานจาก receiver operating characteristic analysis (ROC) ได้ค่าเกณฑ์ตัดสินใจที่เหมาะสมในการวินิจฉัยโรคมะเร็งต่อตระกูล melioidin ที่ ≥ 1:160

ผลการตรวจจากระดับแอนติบอดีที่จำเพาะต่อ EXP ด้วย Indirect hemagglutination test ในชีวหลุมผู้ป่วยโรคมะเร็งต่อตระกูลแอนติบอดีตัวเครื่องดังต่อ <1:20-1:10240 กลุ่มผู้ป่วยโรคติดเชื้อซึ่งระดับแอนติบอดีตัวเครื่องดังต่อ <1:20-1:160 กลุ่มคนปกติระดับแอนติบอดีตัวเครื่องดังต่อ <1:20-1:160 คดังแสดงไปในรูปที่ 2 โดยมีเกณฑ์ตัดสินใจโรคซ้ำค่านานจาก receiver operating characteristic analysis (ROC) ได้ค่าเกณฑ์ตัดสินใจที่เหมาะสมในการวินิจฉัยโรคมะเร็งต่อตระกูล melioidin ที่ ≥ 1:80

รูปที่ 1 แสดงการกระจายระดับแอนติบอดีตัวเครื่องของ B. pseudomallei ใน 3 กลุ่มตัวอย่างด้วย melioidin-IHA
รูปที่ 2. แสดงการกระจายระดับแอนติบอดีโดยใช้ B. pseudomallei ใน 3 กลุ่มตัวอย่างด้วย EXP-IHA

ผลการตรวจหากระดับแอนติบอดีที่ข้ามพาตี LPS ด้วย Indirect hemagglutination test ในชีวกรุ่นสุนัขป่วยโรคเอลิโอโธสโตร์เซลและระดับแอนติบอดีไมโครตัน <1:20-1:1280 กลุ่มผู้ป่วยโรคเอลิโอโธสโตร์เซลระดับแอนติบอดีโดยไมโครตัน <1:20-1:80 กลุ่มคนปกติระดับแอนติบอดีโดยไมโครตัน <1:20-1:80 ดังนั้น ระดับแอนติบอดีจะแสดงไว้ในรูปที่ 3 โดยที่มีเกณฑ์ตัดสินใจเชิงค่านวณมาจาก receiver operating characteristic analysis (ROC) ได้เกณฑ์ตัดสินใจที่เหมาะสมของการวินิจฉัยโรคเอลิโอโธสโตร์เซลที่ ≥ 1:80

รูปที่ 3. แสดงการกระจายระดับแอนติบอดีโดยใช้ B. pseudomallei ใน 3 กลุ่มตัวอย่างด้วย LPS-IHA
ค่าเกณฑ์ที่เหมาะสมของการวินิจฉัยโรคเมลิโอไนด์ IHA ที่ ≥ 1:160 พุ่งกว่ากลุ่มผู้ป่วยโรคเมลิโอไนด์ให้ผลบวกมีจำนวน 59 ราย (84.2%) ในกลุ่มของผู้ป่วยโรคเมลิโอไนด์เชื้อซึ่ง ๆ ให้ผลบวกมีจำนวน 5 ราย (10.0%) และในกลุ่มของคนปกติให้ผลบวกมีจำนวน 2 ราย (3.7 %) ดังแสดงในตารางที่ 1

ค่าเกณฑ์ที่เหมาะสมของการวินิจฉัยโรคเมลิโอไนด์ IHA ที่ ≥ 1:80 พุ่งกว่ากลุ่มผู้ป่วยโรคเมลิโอไนด์ มีผลบวกจำนวน 62 ราย (88.57 %) ในกลุ่มของผู้ป่วยโรคเมลิโอไนด์เชื้อซึ่ง ๆ มีผลบวกจำนวน 2 ราย (4.0 %) และในกลุ่มของคนปกติให้ผลบวกมีจำนวน 5 ราย (9.26 %) ดังแสดงในตารางที่ 1

ตารางที่ 1. แสดงจำนวนและเปอร์เซ็นต์ของแอนติบอดีต่อแอนติเจน 3 ชนิดของกลุ่มของผู้ป่วยโรคเมลิโอไนด์,กลุ่มผู้ป่วยโรคเมลิโอไนด์เชื้อซึ่ง ๆ และกลุ่มคนปกติ

<table>
<thead>
<tr>
<th>ตัวอย่างชีวิตม</th>
<th>จำนวน (ราย)</th>
<th>Melioidin - IHA ≥ 1:160</th>
<th>EXP - IHA ≥ 1:80</th>
<th>LPS - IHA ≥ 1:80</th>
</tr>
</thead>
<tbody>
<tr>
<td>กลุ่มผู้ป่วยโรคเมลิโอไนด์</td>
<td>70</td>
<td>59 (84.29 %)</td>
<td>62 (88.57 %)</td>
<td>57 (81.43 %)</td>
</tr>
<tr>
<td>กลุ่มผู้ป่วยโรคเมลิโอไนด์เชื้อซึ่ง ๆ</td>
<td>50</td>
<td>5 (10.00 %)</td>
<td>2 (4.00 %)</td>
<td>2 (4.00 %)</td>
</tr>
<tr>
<td>กลุ่มคนปกติ</td>
<td>54</td>
<td>2 (3.7 %)</td>
<td>5 (9.26 %)</td>
<td>1 (1.85 %)</td>
</tr>
</tbody>
</table>

ตารางที่ 2. การประเมินผลทางสถิติของแอนติเจน 3 ชนิด ด้วย Melioidin-IHA, EXP-IHA, LPS-IHA.

<table>
<thead>
<tr>
<th>การประเมินผล</th>
<th>Melioidin-IHA</th>
<th>EXP-IHA</th>
<th>LPS-IHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ค่าเกณฑ์ติดสินโรค</td>
<td>≥ 1:160</td>
<td>≥ 1:80</td>
<td>≥ 1:80</td>
</tr>
<tr>
<td>ความไว (Sensitivity)</td>
<td>84.28 %</td>
<td>88.57 %</td>
<td>81.43 %</td>
</tr>
<tr>
<td>ความจำเจ (Specificity)</td>
<td>93.27 %</td>
<td>93.27 %</td>
<td>97.12 %</td>
</tr>
<tr>
<td>ความแม่นยำ (Accuracy)</td>
<td>89.65 %</td>
<td>91.4 %</td>
<td>90.80 %</td>
</tr>
<tr>
<td>ค่าพยากรณ์บวก (Positive predictive value)</td>
<td>89.59 %</td>
<td>90.00 %</td>
<td>95.00 %</td>
</tr>
<tr>
<td>ค่าพยากรณ์ลบ (Negative predictive value)</td>
<td>89.81 %</td>
<td>92.4 %</td>
<td>88.60 %</td>
</tr>
</tbody>
</table>
การประเมินผลทางสถิติของ EXP-IHA พบว่า
ค่าของร้อยละของความไว (sensitivity) ได้ 88.57%, ความ歼ภาพ (specificity) ได้ 93.27, ความแม่นยำ (accuracy) ได้ 91.4% ค่าพยากรณ์บวก (positive predictive value) ได้ 89.9% และค่าพยากรณ์ลบ (negative predictive value) ได้ 92.4 % ดังแสดงในตารางที่ 2.

การประเมินผลทางสถิติของ LPS-IHA พบว่า
c่านมร้อยละของความไว (sensitivity) ได้ 81.43%, ความ歼ภาพ (specificity) ได้ 97.12 % ความแม่นยำ (accuracy) ได้ 90.80 % ค่าพยากรณ์บวก (positive predictive value) ได้ 95.00 % และค่าพยากรณ์ลบ (negative predictive value) ได้ 88.60% ดังแสดงในตารางที่ 2.

สรุปและวิจารณ์

โรคคลื่นไข้คลื่นเป็นโรคที่พบทั่วไป แต่ได้รับความสนใจจากทางการแพทย์ทั่วโลกล่ามเป็นภัยสำคัญ และให้ความสำคัญในระดับโลกที่สูงมาก เนื่องจากมีผู้ป่วยที่พบมากเป็นโรคนี้มีมากขึ้น โดยเฉพาะอย่างยิ่งในภาคตะวันออกเฉียงเหนือของประเทศไทย การวินิจฉัยโรคเป็นไปด้วยความยากลำบาก เนื่องจากอาการของโรคของไทยได้หลากหลาย แบบแฝด ปวดท้อง ดูดน้ำ เซื่องยับและปวดตัวที่ต่อไปตามระยะเวลา ๆ ภายในช่วงของโรคต่าง ๆ และยังมีการเพิ่มขึ้นและยังมีการ ประสบการผ่านครั้งที่มีอาการคล้ายกับโรคคลื่น ซึ่ง ๆ จนได้รับความรู้เป็นอันขาดในแบบ 2 ดังนั้นการ
วินิจฉัยโรคต้องมีการปฏิบัติการที่ชัดเจนที่หลากหลาย มาก วิธีที่ถือเป็นมาตรฐานในการวินิจฉัยโรคสิ่งจากการตรวจ พบเรื่องในสิ่งของวัสดุ บด เซิร์ฟ ของแบบ และปริมาณการใช้ในภาวะภาวะงานแน่นอยู่นาน 4 วัน โดยทั่วไปผู้ป่วยจะมีอาการคล้ายๆ ไข้ 48 ชม. นอกจากนี้
อาการของโรคคลื่นโดยทั่วไปแล้วไม่ปรากฏอาการเลย จนอาการอยู่ในช่วงเริ่มต้น เชื้อไข้ เซียร์ซมานุญารู้ผู้ป่วยไม่มีอาการ เชื้อที่นิดนึงและหนึ่งไม่ปรากฏอาการนานถึง 19 ปี แต่การตรวจทางแอนติบอดี้สามารถตรวจพบแอนติบอดี้ได้หลัง

ได้รับเชื้อ 7-14 วัน ดังนั้นการตรวจวินิจฉัยโรคด้วยการตรวจ
ห้าแอนติบอดี้ต่อเชื้อจะมีความสำคัญ วิธีที่นิยมและอย่าง
คือ indirect hemagglutination test (IHT) จากการศึกษา
ครั้งนี้พบว่าแอนติบอดี้ meliodin ซึ่งเป็น heat stable extracellular antigen (SHA) ได้ผลในความใช้และความเจ้าหน้า
ที่อยู่ในภาครังสีของ Khupulsup และ Petchclai (24)
ส่วน lipopolysaccharide (LPS) (25) เป็น endotoxin ซึ่งมีการ
ศึกษาของ Pilt (26) ทดสอบกับ rabbit antiserum ที่มีการ
immunize เชื้อ B. pseudomallei และรับผู้ป่วยที่มี
ผลตอบกลับเชื้อ B. pseudomallei ท่านี้ สำหรับการ
ศึกษาครั้งนี้ extracellular protein (EXP) ซึ่งเป็น partial
purified extracellular antigen ให้ผลความเท่ากันที่สุด
(88.57 %) แต่ค่าความจัดทำโดยถ้าแอนติบอดี้lipopolysaccharide (97.12 %) และแอนติบอดี้ lipopolysaccharide ได้มีปฏิกิริยาเช่นกันกับโรคคลื่นในบางครั้ง
การเตรียม lipopolysaccharide มีข้อจักกับเตรียมได้
ครั้งในน้ำมันมาก ซึ่งเด่นชัดขึ้นและต้องใช้ประจำที่ยาก
เฉพาะในการเตรียมแอนติบอดี แต่กลับลิพอลิโซแซคาร์ดีเป็นลิพอลิโซแซคาร์ดีแอนติบอดี extracellular protein จะสามารถนำ
มาพัฒนาการเตรียมน้ำยา IHA kit ไป และต้องนำ
มาทดสอบจาก Sheil life ของน้ำยา จำนวนต่อสิ่งในการ
ทดสอบเพื่อดูความ Stabileของน้ำยา ส่วน lipopolysaccharide ต้องนำมายืนออกไปใช้ประโยชน์ใน immuno-
logical test ซึ่งเช่น ELISA ที่ใช้บริการแอนติบอดีนี้ๆ
เนื่องจากเป็นผลิติจินที่มีความจำเพาะสูง

ภัยต่อระบบกระเพาะ

ซึ่งตามคุณภาพที่ดีจากมณฑลวิทยาศาสตร์ใน
โรงพยาบาลตำรวจirty ประกาศ ซึ่งทราบถึงหลากหลายที่ ที่ให้
ความอนุเคราะห์กับค่าย่างวัตถุที่ใช้งานวิจัยนี้

ภัยต่อระบบกระเพาะ

16. Westphal O, Jann K. Bacterial lipopolysaccharide extract with phenol-water and further application.
of the procedure. Methods Carbohydr Chem 1965; 5: 83