Comparative validation of manual and automated method for mixing of blood samples

Viroj Wiwanitkit*


Objective : To compare the quality of specimens obtained from manual and automated blood mixing.

Study Design : Prospective analytic study.

Setting : Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University.

Subject : 2,757 specimens collected in anticoagulant-added blood collection tubes sent to the Clinical Chemistry Unit, Division of Laboratory Medicine, King Chulalongkorn Memorial Hospital between November and December 1998.

Method : Quality examination of each specimen was done. All data were collected, categorized and analyzed.

Results : There were 1,673 specimens mixed by automatic mixer and there were 1,084 specimens mixed by the manual method. The incidence of improper quality specimens was 27 (0.97 %) - 8 hemolysis specimens and 19 clotted specimens. There was no significant difference of ratio of improper specimens in quality between two mixing methods. Comparing automated mixing to manual mixing, the relative risk for improper specimens was 0.5 - for hemolysis specimens 1.94 and for clotted specimen 0.30

*Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University
Conclusion : The ratios of improper specimens from the automated and manual blood mixing methods were to different in general. However, although automated blood mixing can help decrease clotted specimens, there is the risk of hemolysis specimens. The suggestion is for using the automatic mixer in large settings due to the fact that it can save time and personnel effort.

Keywords : Specimen quality, Blood mixing.

Reprint request: Wiwanitkit V. Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Received for publication. May 15, 2002.
วิโรจน์ นิมาธิจิต. การวิเคราะห์ปริมาณเทียบคุณภาพสิ่งส่งตรวจทางห้องปฏิบัติการที่ผ่านการสมดุลยุทธศาสตร์และเครื่องมือที่มีคุณภาพ. จุฬาลงกรณ์เวชสาร 2546 มี.ค.; 47(3): 163 – 8

วัตถุประสงค์ : เพื่อเปรียบเทียบคุณภาพสิ่งส่งตรวจที่ผ่านการผสมผสานยุทธศาสตร์และเครื่องมือที่มีคุณภาพ

รูปแบบการศึกษา : การศึกษาเชิงวิเคราะห์แบบไปใช้หลังมา

สถานที่ทำการศึกษา : ภาควิชาเวชศาสตร์รังสีวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

กลุ่มที่ทำการศึกษา : ตัวอย่างสิ่งส่งตรวจที่บรรจุในหลอดบรรจุสิ่งส่งตรวจกันเลือดเชิงที่ส่งตรวจอยู่ในคณะศิษย์เก่ามีคุณภาพ ห้องปฏิบัติการเวชศาสตร์รังสีวิทยา โรงพยาบาลจุฬาลงกรณ์ จำนวน 2,757 ตัวอย่าง ระหว่างเดือนพฤษภาคมถึงธันวาคม 2541

วิธีการศึกษา : ตรวจคุณภาพสิ่งส่งตรวจแต่ละสิ่งส่งตรวจทำการรวมถึงจัดกลุ่ม และวิเคราะห์ข้อมูลทั้งหมด

ผลการศึกษา : มีตัวอย่างเลือด 1,673 ตัวอย่างที่ผ่านการผสมผสานยุทธศาสตร์ ห้องปฏิบัติการที่มีคุณภาพไม่เหมาะสมเท่ากับ 27 ตัวอย่าง (9.7 %) โดยแบ่งเป็นตัวอย่างที่ไม่การผลิตหลอดเลือด 8 ตัวอย่าง มีการแยกช่องเลือด 19 ตัวอย่าง ไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติของอัตราส่วนของสิ่งส่งตรวจที่มีคุณภาพไม่เหมาะสม ระหว่างการผสมผสานก่อนถึงผลิตชีวิต เมื่อเปรียบเทียบกับการผสมผสานก่อนผลิตชีวิตนั่นคือการผลิตข้างต้นเครื่องมือที่มีคุณภาพไม่เหมาะสมเท่ากับ 0.52 โดยอัตราเสี่ยงสำหรับการผลิตดังกล่าวนั้นที่มีตัวอย่างเลือด 1.94 และสำหรับการผลิตดังกล่าวนั้นที่มีตัวอย่างเลือด 0.30

สรุป : อัตราส่วนของสิ่งส่งตรวจที่มีคุณภาพไม่เหมาะสมจากการวิเคราะห์ผลการผสมผสานข้างต้นชี้ว่า ไม่มีความแตกต่างกัน แม้ว่าการผสมผสานเครื่องจักรที่ห้องตัวอย่างข้างต้นเครื่องมือที่มีตัวอย่างเลือด แต่ความแตกต่างภายในอัตราการผลิตดังกล่าวมีตัวอย่างเลือด ได้เสนอข้อแนะนำให้ใช้เครื่องมือที่มีคุณภาพในการผสมผสานข้างต้นเครื่องมือที่มีตัวอย่างเลือด เนื่องจากระยะเวลาที่ยาวนาน

คำสำคัญ : คุณภาพของสิ่งส่งตรวจทางห้องปฏิบัติการ, การผสมผสานตัวอย่างเลือด
Specimen collection is an important step in laboratory procedures. There are many laboratory tests requiring blood specimens. When blood specimens are set in vitro, clotting will occur. Therefore, when a plasma specimen is required, anticoagulant is added blood to the collection tube. After collection, if the anticoagulant tube is used, mixing must be performed. Presently the major methods to mix blood specimens are manual and automatic mixing. Manual mixing is the conventional method and automatic mixing is new method that makes use of an automatic mixer.

The quality of blood specimens is important because poor quality specimens cannot result in accurate laboratory results. Improper quality specimens can be divided into categories such as hemolysis and clotted. Although automatic mixers have been used in Thailand for years, there has been no report about their efficacy. This study was set intended to compare the quality of specimens from both manual and automatic mixing. The results of this study may help physicians select appropriate methods for blood specimen mixing.

Materials and Methods

This study was a prospective analytic study. The subjects in this study were 2,757 specimens collected in citrate anticoagulant-added blood collection tubes and sent to the Clinical Chemistry Unit, Division of Laboratory Medicine, King Chulalongkorn Memorial Hospital between November and December 1998. As the services of the laboratory are the same in each month, only specimens for two months were included in this study. Manual method means mixing by medical personal following inversion mixing technique (inversion of blood collection tube up and down about 8 to 10 times). Automated method bases on inversion mixing technique but makes use of automated blood mixer in stead of medical personnel. The quality of each specimen was examined and then categorized as proper or improper by a medical technologist. The results of each investigation were recorded in tabular collective form. All results were collected, analyzed and interpreted. Analytic statistical analysis was used when appropriate. A two-tailed test was used in comparisons. P-value less than 0.05 was accepted as having statistical significance.

Results

From the total of 2,757 specimens included in this study, there were 1,673 specimens mixed by automatic mixer and 1,084 specimens mixed by the manual method. The number of improper specimens was 27 specimens - 8 hemolysis specimens and 19 clotted specimens (Table 1). There was no significant difference of ratio of improper specimens between

<table>
<thead>
<tr>
<th>Method of mixing</th>
<th>Total specimens</th>
<th>Improper specimens in quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hemolysis</td>
</tr>
<tr>
<td>Manual mixing</td>
<td>1,084</td>
<td>2</td>
</tr>
<tr>
<td>Automatic mixing</td>
<td>1,673</td>
<td>6</td>
</tr>
</tbody>
</table>

*There was significant difference between ratio of that type of specimen between two mixing methods.
the two mixing methods. There was no significant
difference of ratio of hemolysis specimens but there
was a significant difference between ratio of the clotted
specimens between the two methods. Comparing
automatic mixing and manual mixing, the relative risk
for improper specimens is 0.52 - 1.94 for hemolysis
specimens and 0.30 for clotted specimens.

Discussion

Mixing is an important procedure required in
collection of anticoagulant-added blood specimens.
The major aim of mixing is producing homogeneity of
blood and anticoagulant to prevent clot formation.\(^2\(^,\(^3\)\)\) Mixing should be proper so that the laboratory
procedures will be successfully performed.

Although the percentage (0.97 %) of improper
specimens in quality were small, each improper
specimen implies lost time and money.\(^3\) The quality
of specimens from manual mixing was not different
from automatic mixing. But the ratio of clotted
specimens from manual mixing was greater than from
automatic mixing. There was no statistical difference
in the ratio of hemolysis specimens from both mixing
methods but there was statistical difference in the
ratio of clotted specimens from the two methods.

Concerning relative risk, automatic mixing is
considered to be useful in prevention of clot but it
adds the risk of hemolysis. This can imply that
automatic mixers can result in better homogeneity of
the mixture but with less control of mixing force.

A study of Follee G, et al.\(^5\) showed that no
significant advantage could be expected from the use
of automated blood mixing as compared to manual
blood mixing. This matches the results of this study
where there was no statistical difference in improper
specimen ratios between the two mixing methods.
Although automated blood mixing is subject to
practical difficulties involving transport and battery
loading. But the automatic machines can help save
time and personnel, therefore, they should be used
in the large settings. The conclusion is that automatic
mixers should be used if available. In cases where
there is a chance of hemolysis, as for specimens
from hematology or oncology wards, manual mixing
is advised.

This study design was a prospective study.
Therefore, bias in finding causes of improper
specimens could be controlled. The subjects in this
study were not living subjects so no problems of
exclusions occurred. Anyway, only citrate-anticoagulant
added blood specimens were studied. Therefore,
there may be some differences in other anticoagulant
added blood specimens.

Conclusions

A prospective analytic study to compare
the quality of blood specimens from manual and
automatic mixing methods was performed. The study
revealed that the automatic mixer can reduce the
number of clotted specimen but it increases the risk of
hemolysis.

References

1. Noe DA, Rock RC. Specimen collection procedure.
In: Noe DA, Rock RC, eds. Laboratory
Medicine. 1st ed. Maryland: Williams & Wilkins,
1994: 870 - 6

2. Wiwanitkit V, Sirintikom A, Charuruks N. Evacuated
Jun; 42(6): 417 - 30
3. Wiwanitkit V. Errors in laboratory request in the In-Patient Department, King Chulalongkorn Memorial Hospital. Chula Med J 1998 Sep; 42(9): 685 - 93
