The use of various parameters of 99mTc-sestamibi scintimammography to predict response of breast cancer to neoadjuvant chemotherapy

Tanyaluk Sriwongsa *
Supatporn Tepmongkol* Prasert Lertsanguansinchai*

Objective : To identify whether various parameters of 99mTc-sestamibi scintimammography could predict the response of breast cancer to neoadjuvant chemotherapy (NAC) and also observe the correlation between these parameters and the response to chemotherapy.

Setting : Division Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital.

Subject : 11 untreated breast cancer female patients who underwent neoadjuvant chemotherapy with 4 cycles of CEF regimen. No patients had contraindication for radiopharmaceutical study. All subjects were informed about the study and gave their consent in writing before recruitment.

Design : Prospective descriptive study.

Method : All patients were studied with 99mTc-sestamibi scintimammography prior to NAC. The scintigraphic parameters of breast lesions included washout rate (WOR %), tumor index (TI), tumor to background ratio (TB ratio), and tumor half clearance time (T1/2) were recorded. The patients were classified into responders (Group 1) and non-responders (Group 2) by ultrasonographic change of tumor size based on WHO criteria. The correlation between these parameters and response of tumor to NAC were evaluated.

*Department of Radiology, Faculty of Medicine, Chulalongkorn University
Results: Among 11 patients, 3 patients were classified into Group 1 and 8 patients in Group 2. There was neither statistically significant difference detected in the characteristics of the patients nor the tumor. The mean values of WOR, TI, T/B ratio and T1/2 in Group 1 were 54.18 ± 48.60%, 2.98 ± 1.74, 1.44 ± 0.44 and 169.25 ± 169.54 minutes, respectively. In Group 2, the parameter values were 49.87 ± 19.38%, 0.92 ± 0.97, 1.91 ± 0.39 and 269.93 ± 250.35 minutes, respectively. TI showed statistically significant difference between the two groups and high prognostic test with the cut-off value of 1.58 (sensitivity 100%, specificity 88% and accuracy 91%). Neither statistically significant difference in the rest of scintigraphic parameters nor close correlation between all parameters and % change of tumor size was detected between both groups.

Conclusion: Regarding the functional imaging in breast cancer patients with \(^{99m}\)Tc-sestamibi scintimammography, only Tumor Index showed significant correlation with the response of NAC while other parameters did not. The parameter might be useful for predicting response to NAC. However, the results from this preliminary report could be affected by the small size of recruited subjects. Further study in a larger group of patients is suggested.

Keywords: \(^{99m}\)Tc-sestamibi scintimammography, Breast cancer, Neoadjuvant chemotherapy.

Reprint request: Srisongsas T, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. E-mail: stanyalu@hotmail.com

Received for publication: June 25, 2004.
อธิญลักษณ์ ศรีวงศ์, ศุภกิจพร เทพมงคล, ปรางเสริฐ เลิศสกุลสินชัย. การใช้คำนวณด้วยเรื่องที่ได้จากการตรวจสอบด้านเลือดสารเกลือรังสี ⁹⁹ᵐTc-sestamibi ในการพยายามการตอบสนองต่อการรักษาด้วยเคมีเป้าชัดยังมีการตัดในผู้ป่วยโรคมะเร็งเต้านม. จุฬาลงกรณ์มหาวิทยาลัย 2547 ก.ย. 48(9): 585–98

วัตถุประสงค์: เพื่อศึกษาด้วยวิธีการ ⁹⁹ᵐTc-sestamibi เพื่อนำมาใช้ในการพยายามการรักษาด้วยเคมีเป้าชัดยังมีการตัดในผู้ป่วยมะเร็งเต้านมและตัดความที่เป็นประโยชน์ระหว่างการตัดด้วย ⁹⁹ᵐTc-sestamibi กับผลของการรักษาตามที่สนใจส่งผลต่อสภาวะสุขภาพทั้งมนุษย์เพื่อใช้ท่านในสถิติการเปลี่ยนแปลงขนาดของกอล์นเหมืองจากการรักษา

สถานที่ทำการศึกษา: สถาบันมะเร็งศิริราช ภาควิชารังสีวิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย โรงพยาบาลจุฬาลงกรณ์

การคัดเลือกผู้ป่วย: ผู้ป่วยที่มีการรักษาด้วยเคมีเป้าชัดยังมีการตัดด้วย ⁹⁹ᵐTc-sestamibi จำนวน 11ราย ผู้ป่วยทุกรายต้องไม่ใช้ยาในการตรวจด้วยสารเคมีรังสีผู้ป่วยได้รับการวินิจฉัยเกี่ยวกับการศึกษาและลงนามยินยอมเป็นลายลักษณ์อักษร

รูปแบบการวิจัย: การศึกษาเชิงพรรณนาแบบปัจจัยหน้า

วิธีการวิจัย: ผู้ป่วยได้รับการตรวจพบมีการตัดด้วย ⁹⁹ᵐTc-sestamibi ก่อนรักษาด้วยเคมี ปัจจัยและปัจจัยที่เกี่ยวกับการตัดด้วยฯ ได้แก่ อัตราการดูดซับของสารเคมีรังสี, ปริมาณสารเคมีรังสีในก้อนมะเร็งที่ทำให้เกิดผลเลือดส่งผลต่อการรักษา, คำสั่งในการใช้สารเคมีรังสีในก้อนมะเร็งต่อเนื่องถึงบัด ที่วัน 12 นาที และคำสั่งที่รักษาสารเคมีรังสีในก้อนมะเร็ง ผู้ป่วยที่เข้าร่วมการศึกษาถูกแบ่งออกเป็นสองกลุ่มโดยอาศัยผลการตอบสนองการรักษาซึ่งมีการเปลี่ยนแปลงขนาดก้อนมะเร็งที่ได้จากการตรวจด้วยเคมีรังสีผู้ป่วยที่มีการตัดด้วย ⁹⁹ᵐTc-sestamibi กับผลการตอบสนองต่อการรักษา
ผลการวิจัย:

มีผู้ป่วยที่ตอบสนองต่อการรักษา 3 รายและไม่ตอบสนองจำนวน 8 ราย โดยกลุ่มและผู้ป่วยและขนาดกลอนก่อนรักษาไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติระหว่างผู้ป่วย 2 กลุ่ม ค่าเฉลี่ยของอัตราการถูกทำาออกของสารนาสร้างสี่ ปริมาณสารนาสร้างสี่ในกลอนเร่งเทียบกับในเลือดเลือดเออร์ต้า ค่าสัมประสิทธิ์ของสารนาสร้างสี่ในกลอนเร่งต่ำกว่าเกณฑ์ที่iola 12 นาที และค่าสัมประสิทธิ์ของสารนาสร้างสี่ในกลอนเร่งในผู้ป่วยกลุ่มที่มีการตอบสนองต่อการรักษาเท่ากับ 54.18 ± 48.60%, 2.98 ± 1.74, 1.44 ± 0.44 และ 169.25 ± 169.54 นาที ตามลำดับ และในผู้ป่วยกลุ่มที่ไม่ตอบสนองต่อการรักษาเท่ากับ 49.87 ± 19.38%, 0.92 ± 0.97, 1.91 ± 0.39 และ 269.93 ± 250.35 นาที ตามลำดับ มีเพียงค่าปริมาณสารนาสร้างสี่ในกลอนเร่งเทียบกับในเลือดเลือดเออร์ต้าเท่านั้นที่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างผู้ป่วยทั้งสองกลุ่ม โดยมีค่า cut-off เท่ากับ 1.58 (ความไวร้อยละ 100, ความเท็จร้อยละ 88 และความผิดพลาดร้อยละ 91) ไม่พบความแตกต่างอย่างมีนัยสำคัญทางสถิติของค่าอื่นๆ ระหว่างผู้ป่วยทั้งสองกลุ่ม และไม่พบว่ามีความสัมพันธ์อย่างใกล้ชิดระหว่างค่าน้าวัดต่างๆนี้กับการเปลี่ยนแปลงขนาดกลอนเร่ง

สรุป:

ค่าปริมาณสารนาสร้างสี่ในกลอนเร่งเทียบกับในเลือดเลือดเออร์ต้าซึ่งได้จากการตรวจสแกนด้วยสารนาสร้างสี่ก่อนการรักษาด้วยที-เซสทามิบิ spre สามารถนำมาใช้ในการตัดสินการรักษาด้วยเคมีบำบัดก่อนการผ่าตัดผู้ป่วยและตัดสิน pared ได้ส่วนน้าวัดต่างๆ ไม่มีความสัมพันธ์กับการตอบสนองต่อการรักษาและไม่สามารถนำมาใช้เพื่อการสืบค้นการรักษาด้วยวิธีต่างๆ อย่างไรก็ตาม เนื่องจากในการศึกษาครั้งนี้ มีข้อจำกัดที่จำนวนผู้ป่วยน้าวัดมีน้อย ซึ่งอาจจะทำให้ผลการศึกษามีอัตราผิดพลาดได้ ซึ่งควรจะมีการศึกษาเพิ่มเติมในผู้ป่วยจำนวนมากขึ้นต่อไป

คำสำคัญ:

99mTc-sestamibi scintimammography, เคมีบำบัดก่อนการผ่าตัด, แรกเริ่มต้าน
Breast cancer is the most common cancer among women worldwide. In Thailand, breast cancer is the second most common cancer in the female and its annual incidence is currently rising.\(^{12}\) Neoadjuvant chemotherapy (NAC) has become part of standard treatment for locally advanced breast cancer and the optional treatment prior to breast conserving surgery in the early stage of breast cancer.\(^{3-9}\) It is found in many studies that response to NAC correlates with relapse free-survival and can be a prognostic marker for therapeutic results and useful to adjust further treatment with loco-regional treatment and systemic therapy.\(^{6-7}\) The intrinsic chemoresistance called multidrug resistance (MDR) is the major cause of treatment failure\(^{8-11}\) and the most known causes now are MDR1 and MRP, which codes multidrug-resistance proteins named plasmaglycoprotein (Pgp) and MRP1. Both proteins act as an ATP-dependent drug efflux pump of board specificity that enables cancer cells to extrude many chemotherapeutic agents and thus circumvent their lethal effects. Their expression can be the prognostic index for poor response of treatment in many cancers, relapse rate and it also indicates the aggressiveness of the tumor cell.\(^{12-17}\)

Functional identification of Pgp and perhaps MRP might provide important information on the direction of the choice of chemotherapeutic agents or the combined use of reversing agents. Diagnostic radiopharmaceuticals that are recognized as transport substrates by the human MDR1, Pgp and MRP1 may enable functional identification of transporter mediated resistance \textit{in vivo} by breast scintigraphy.\(^{16-23}\) There have been no previous studies on the comparison between various parameters.

The aim of this prospective observational study was to evaluate the clinical value of various parameters from scintimammography with \(^{99m}\text{Tc}\)-sestamibi in predicting neoadjuvant chemotherapy response in patients with breast cancer. We also tried to define the optimal cut-off value of these parameters and perform equations of correlation between these parameters and tumor response to neoadjuvant chemotherapy.

Material and Method

Patients: Eleven patients with previously untreated breast carcinoma were recruited into the study. Their tumors were staged according to the tumor-nodes-metastasis (TNM) system. Nuclear grading was used to define the degree of tumor differentiation and hormonal receptor status was assessed. Patients with poor physical status, pregnancy, distant metastases, or those being treated with other methods were excluded. All patients were evaluated before neoadjuvant chemotherapy and were followed until surgery to verify the chemotherapy outcome. The study protocol was approved by the Ethics Committee for Research of the Faculty of Medicine. The subjects were thoroughly explained about the study before they signed their consent forms.

Protocol: Before starting chemotherapy, all subjects underwent a baseline evaluation that included clinical examination, bilateral mammography, breast ultrasonography, fine needle aspiration cytology of the lesions, standard chest X-rays and \(^{99m}\text{Tc}\)-sestamibi scintimammography. The tumor sizes were determined by measuring the two largest perpendicular diameters evidenced on ultrasonography examinations at baseline, after 2\(^{nd}\) and 4\(^{th}\) cycle of NAC. Four cycles of chemotherapy (CEF regimen;
cyclophosphamide 600 mg/m², epirubicin 60 mg/m²
and fluorouracil 600 mg/m²) every 3 weeks were given
in all patients. All subjects underwent surgical
treatment (radical mastectomy with/without axillary
lymphadenectomy or wide excision) with pathological
examination of the removed tumors and nodes.

Scintimammographic study: The ⁹⁹ᵐTc-sestamibi
scintimammographic study performed before
chemotherapy was aimed at predicting tumor
response to chemotherapy. ⁹⁹ᵐTc-sestamibi (Cardiolite,
Dupont Pharmaceuticals Co., Billerica, MA), 740
MBq (20 mCi), was injected intravenously into the
patient's foot vein. A dynamic study was performed
in the prone lateral position with a large field-of-view
single head gamma camera (General Electrics,
CAMSTAR 600 XR/Τ) equipped with a high-resolution
low energy parallel-hole collimator and interfaced to a
computer system (photopeak 140 keV, symmetrical
10 % window). Sequential images were recorded
using 64x64 matrix every 2 seconds for 2 minutes
(Phase I), then every 1 minute for 10 minutes (Phase
II). Static planar images (matrix 128x128 pixels, 1500
kcount) were then obtained at 12 minutes after the
radiotracer administration in prone lateral and anterior
supine positions. Afterward, images at 30 minutes,
1 hour, 2 hours and 4 hours were acquired using the
same time recorded at 12 minutes. Each breast was
separated by scintimammography lead pad in the
prone lateral position.

After image acquisition was complete,
regions of interest (ROI) were drawn around the lesion
with maximum tumor activity on the lateral view. This
ROI was then being used for all other images with
different time for all the 4 parameters obtained: 1) The
tumor to background ratio was the ratio between
mean count in maximal ROI over tumor (T) and mean
count in the same size ROI over contralateral normal
breast tissue (B); 2) The tumor washout rate (WOR)
was calculated by the ratio of delayed to early uptake
as follow:

\[
\text{WOR} = \left(\frac{(T-B)_{12\text{ min}} - (T-B)_{240\text{ min}}}{(T-B)_{12\text{ min}}}\right) \times 100\%;
\]

3) The time to half clearance (T ½; minutes) was
computed using monoexponential fitting from decay-
corrected activity curve; 4) The tumor index (TI) was
the ratio of the mean activity in tumor (summed phase
II; total 10 minutes) and the total activity in the first
3 frames of visualized aorta in phase I times 100.
The figure 100 was used to make aorta the same
acquisition period as tumor.

\[
\text{TI} = \frac{\text{Mean activity in tumor in 10 minutes}}{\text{Total activity in aorta in the first 3 frames X 100}}
\]

The examples of ROI drawing were demonstrated in Figure 1.

Outcome measures: The gold standard of the study
was the objective response of the primitive tumor to
neoadjuvant chemotherapy, as evaluated on % change
of residual tumor size on ultrasonography after the 4th
cycle of chemotherapy based on WHO criteria of tumor
response. The radiological outcome was classified
as positive response to chemotherapy (group 1) if
the residual tumor size was reduced ≥ 50 % and
classified as non-response to chemotherapy (group
2) if the residual tumor size was < 50% decreased or
was increased.

Statistical analysis: Data were expressed as mean ±
1SD. The results of ⁹⁹ᵐTc-sestamibi prognostic tests
were expressed in terms of sensitivity, specificity and
accuracy with 95% confidence intervals. A 2-tailed
t-test or Fisher exact test was used, when appropriate,
to evaluate the difference of baseline variables and
Figure 1. Shows region of interest (ROI) of the static images of 99mTc-sestamibi scintimammography for parameters analysis. Figure 1A and 1B show samples of ROI drawn over tumor and background activity over tumor and background in serial, respectively, to analyze T/B ratio and WOR (%). Figure 1C shows ROI over tumor from the summed images in phase II for mean activity in tumor and figure 1D shows ROI over aorta, these images used in tumor index analysis.

scintigraphic parameters between two response groups. ROC analysis was used to define the best cut-off value to differentiate group 1 from group 2. Correlations between scintigraphic parameters and % change of tumor size after chemotherapy were evaluated using simple regression analysis and Pearson's coefficient of correlation. A probability value (p) of less than 0.05 was considered significant.

Results

From January 1, 2003 to December 31, 2003, 11 female patients were recruited in the study. Three patients were classified as group 1 (responders) and eight patients were classified as group 2 (non-responders). Table 1 showed the baseline characteristics of patients. There was no statistically significant difference in age, duration of symptoms,
After neoadjuvant chemotherapy, all patients underwent surgery with postoperative chemotherapy and external radiation. No mortality or recurrent disease was reported during the study period.

Table 1. Characteristics of patients.

<table>
<thead>
<tr>
<th>Pt No.</th>
<th>Age (year)</th>
<th>Menopausal status</th>
<th>Duration of symptom</th>
<th>Clinical stage</th>
<th>Histo</th>
<th>Grade</th>
<th>Side</th>
<th>Location</th>
<th>USG size (cm)</th>
<th>Time to Rx (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>post menopause</td>
<td>3 mo</td>
<td>T2N0M0</td>
<td>IDC</td>
<td>NA</td>
<td>Left</td>
<td>LOU</td>
<td>2.2x1.8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>perimenopause</td>
<td>1 mo</td>
<td>T2N0M0</td>
<td>MDC</td>
<td>3</td>
<td>Left</td>
<td>LUM</td>
<td>1.9X2.1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>post menopause</td>
<td>3 mo</td>
<td>T2N0M0</td>
<td>IDC</td>
<td>3</td>
<td>Left</td>
<td>LLI</td>
<td>1.0X3.0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>premenopause</td>
<td>6 mo</td>
<td>T3N0M0</td>
<td>IDC</td>
<td>NA</td>
<td>Left</td>
<td>LOU</td>
<td>3.2X1.7</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>premenopause</td>
<td>1 mo</td>
<td>T2N1M0</td>
<td>IDC</td>
<td>3</td>
<td>Left</td>
<td>LOU</td>
<td>1.6x1.0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>premenopause</td>
<td>2 y</td>
<td>T2N0M0</td>
<td>IDC</td>
<td>2</td>
<td>Left</td>
<td>LOU</td>
<td>2.1X3.3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>premenopause</td>
<td>2 mo</td>
<td>T3N1M0</td>
<td>IDC</td>
<td>3</td>
<td>Right</td>
<td>central</td>
<td>3.3x4.0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>premenopause</td>
<td>3 mo</td>
<td>T2N1M0</td>
<td>IDC</td>
<td>2</td>
<td>Right</td>
<td>RUO</td>
<td>2.3X2.3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>postmenopause</td>
<td>1 week</td>
<td>T2N0M0</td>
<td>MCA</td>
<td>2</td>
<td>Right</td>
<td>RUI</td>
<td>2.9X3.3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>57</td>
<td>postmenopause</td>
<td>6 mo</td>
<td>T4N0M0</td>
<td>MDC</td>
<td>2</td>
<td>Right</td>
<td>RUI</td>
<td>2.8X2.6</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>54</td>
<td>perimenopause</td>
<td>1 mo</td>
<td>T2N0M0</td>
<td>MDC</td>
<td>3</td>
<td>Left</td>
<td>LOU</td>
<td>2.4X2.0</td>
<td>3</td>
</tr>
</tbody>
</table>

IDC=Invasive ductal carcinoma, MDC=Medullar carcinoma, MCA=Mammary carcinoma
LOU=Left upper outer, LUM=Left upper mid, LLI=Left lower inner, RUO=Right upper outer, RUI=Right upper inner, NA=Not available; Patients with bold and italic numbers were responder group (Group I).

Table 2. Clinical characteristics comparison between two groups of patients.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group 1 (n=3)</th>
<th>Group 2 (n=8)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>48.33 ± 5.03</td>
<td>49.00 ± 9.04</td>
<td>0.91</td>
</tr>
<tr>
<td>Duration of symptoms (months)</td>
<td>2.33 ± 1.15</td>
<td>5.41 ± 7.83</td>
<td>0.53</td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td>2.20 ± 0.10</td>
<td>2.95 ± 0.71</td>
<td>0.11</td>
</tr>
<tr>
<td>Time to treatment interval (days)</td>
<td>1.67 ± 1.53</td>
<td>2.75 ± 0.89</td>
<td>0.17</td>
</tr>
<tr>
<td>% post menopause</td>
<td>33.3%</td>
<td>37.5%</td>
<td>0.90</td>
</tr>
<tr>
<td>% IDC</td>
<td>66.7%</td>
<td>62.5%</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Values are mean±SD.
The scintigraphic parameter results and the tumor response of all patients are demonstrated in Table 3. When compared these scintigraphic parameters between the 2 patient groups, only TI showed statistically significant difference (p value = 0.03) (Table 4). The optimal cut-off value of TI obtained from ROC analysis was 1.58 (Figure 2). The sensitivity, specificity and accuracy of the cut-off value were 100 %, 88 % and 91 %, respectively. There was no close correlation between all 4 imaging parameters and % change of tumor size after chemotherapy. The correlation coefficient (R^2) ranged 0.004-0.449.

![ROC Curve](image)

Figure 2. Shows ROC curve of tumor index. As the cut-off value is set at 1.58 (black arrow), the sensitivity of the test is 100% and specificity is 88%.

Table 3. Scintigraphic parameter results of all 11 patients and response of tumor to chemotherapy by % change of the tumor size by ultrasonography.

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>WOR (%)</th>
<th>TI ($x10^3$)</th>
<th>T/B at 10'</th>
<th>T1/2 (min)</th>
<th>% change of tumor size</th>
<th>Radiological response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.79</td>
<td>2.317</td>
<td>1.87</td>
<td>364.74</td>
<td>-50%</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>78.75</td>
<td>4.95</td>
<td>0.98</td>
<td>80.58</td>
<td>-89%</td>
<td>Group 1</td>
</tr>
<tr>
<td>3</td>
<td>72.00</td>
<td>0.14</td>
<td>1.74</td>
<td>144.37</td>
<td>-30%</td>
<td>Group 2</td>
</tr>
<tr>
<td>4</td>
<td>66.82</td>
<td>3.08</td>
<td>2.06</td>
<td>128.33</td>
<td>130%</td>
<td>Group 2</td>
</tr>
<tr>
<td>5</td>
<td>71.76</td>
<td>1.49</td>
<td>2.48</td>
<td>157.5</td>
<td>322%</td>
<td>Group 2</td>
</tr>
<tr>
<td>6</td>
<td>39.77</td>
<td>0.68</td>
<td>2.40</td>
<td>301.3</td>
<td>-42%</td>
<td>Group 2</td>
</tr>
<tr>
<td>7</td>
<td>45.29</td>
<td>0.11</td>
<td>1.95</td>
<td>277.2</td>
<td>127%</td>
<td>Group 2</td>
</tr>
<tr>
<td>8</td>
<td>85.59</td>
<td>1.67</td>
<td>1.46</td>
<td>62.43</td>
<td>-67%</td>
<td>Group 1</td>
</tr>
<tr>
<td>9</td>
<td>22.56</td>
<td>0.51</td>
<td>1.4496</td>
<td>866.25</td>
<td>-12%</td>
<td>Group 2</td>
</tr>
<tr>
<td>10</td>
<td>53.12</td>
<td>0.58</td>
<td>1.759211</td>
<td>165</td>
<td>-11%</td>
<td>Group 2</td>
</tr>
<tr>
<td>11</td>
<td>27.68</td>
<td>0.76</td>
<td>1.459636</td>
<td>119.48</td>
<td>-43%</td>
<td>Group 2</td>
</tr>
</tbody>
</table>
Table 4. Comparison of scintigraphic parameters between responders (Group 1) and non-responders (Group 2).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1 (n = 3)</th>
<th>Group 2 (n=8)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOR (%)</td>
<td>54.18 ± 48.60</td>
<td>49.87 ± 19.38</td>
<td>0.89</td>
</tr>
<tr>
<td>T1</td>
<td>2.98 ± 1.74</td>
<td>0.92 ± 0.97</td>
<td>0.03</td>
</tr>
<tr>
<td>T/B at 12 minutes</td>
<td>1.44 ± 0.44</td>
<td>1.91 ± 0.39</td>
<td>0.11</td>
</tr>
<tr>
<td>T1/2 (min)</td>
<td>169.25 ± 169.54</td>
<td>269.93 ± 250.35</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Discussion

99mTc-sestamibi which was identified as a substrate of PgP and MRP (27-29) has been used in imaging of many tumors including breast cancer. Functional imaging with this radiotracer is an easy non-invasive technique to evaluate multidrug resistant proteins, to follow the result of reversal agents usage and also to predict the response of tumor to chemotherapy. (15,18,20,30-32) Vecchio et al. (33-34) studied patients with breast cancer and found that tumor with high expression of PgP showed 2.7 times higher 99mTc-sestamibi washout than those with normal PgP level. He also reported that patients with chemoresistant breast tumor correlated well with 99mTc-sestamibi half clearance time of 204 minutes or less.

Sciuto et al. (50) reported that in patients with locally advanced breast cancer, the washout rate of 45 % or more could predict poor chemotherapeutic response. This was similar to the report by Kostakoglu (53) who found positive correlation between 99mTc-sestamibi washout rate and PgP expression and also poor tumor response to chemotherapy. He suggested that the study could identify patients with high risk for treatment failure.

In our study, there was no statistically significant difference between groups of both washout rate and tumor half clearance time of 99mTc-sestamibi, as that reported in the study by Gorlick et al. (56) They concluded that there was no correlation between both half-life and uptake ratio of this radiotracer and PgP expression in tumor tissue, as well as histological tumor necrosis.

The study by Kao et al. (37) and Alonso et al. (51,58) found that tumor with high PgP and MRP expression showed significant lower tumor to background ratio uptake at 10 minutes. Contrast to their results, our study showed lack of correlation of this parameter to the treatment response, similar to the previous report by Gorlick et al. (56)

According to our results, there was no statistically significant difference of the mentioned three parameters between the two response groups. One important limitation was small number of patients recruited in the study and large variation of scintigraphic data, which could affect the statistical analysis, should be considered. Other possible confounding factors which was not analyzed included: 1) factors that affected tumor uptake of the radiotracer (vascularity, cellularity & proliferation, dermoplastic activity, tumor cell type, behavior of tumor cell, hormonal receptor status) and; 2) factors that affected tumor response to treatment (tumor size, nodal
metastasis, estrogen & progestrogen receptors, ploidy, S-phase, C-erb2, PS3, tumor oncogene, growth factors). The technical limitation included soft tissue attenuation of tumor (especially tumor at inner quadrants) and evaluation of tumor response by USG could not reflect the viability of tumor. Functional imaging e.g. 201Thallium chloride or PET study might be more accurate techniques.

Beyond those parameters, we also determined the new parameter using the data obtained in the dynamic phase of the study, TI, and its correlation to tumor response. Surprisingly, this was the only parameter which shows statistically significant difference between both groups of patients. With cutoff value of 1.58 to indicate good response, high prognostic test was demonstrated. (sensitivity 100 %, specificity 88 % and accuracy 91%). This scintigraphic parameter could be one useful data in patient evaluation prior to chemotherapy and should be further evaluated with more number of patients.

Conclusion

This preliminary report demonstrates 99mTc-sestamibi scintimammography using tumor index (TI) parameter could be useful for the prediction of response to neoadjuvant chemotherapy in breast cancer patients while other parameters show poor correlation to tumor response. However, the results of the present study could be affected by the small number of patients and other factors which affect radiotracer uptake and tumor response. Further study in a larger group of patients is suggested.

Acknowledgement

This study is granted by the Rachada-

References

1988 Jan; 29(1): 48 - 53

aboncology3.htm

