The development of a standard drug use evaluation criteria form for Cefoperazone use at a regional hospital in Northeastern Thailand

Anun Chaikoolvatana* Cholada Chaikoolvatana**
Benja Thiwakornsasrithorn*** Sriwaporn Puthiwong***

Objective : The study was aimed to develop a standard drug use evaluation (DUE) criteria form for Cefoperazone, and to evaluate the effectiveness of the standard criteria form.

Design : A retrospective-descriptive study.

Setting : Sapasithiprasong Hospital, Ubon Ratchathani, Thailand.

Method : The study involved the development of a DUE criteria form, and the evaluation of the effectiveness of the standard criteria form. The content validation of the criteria form was performed by two physicians and one pharmacist. Forty-two cases were enrolled in the study. Their history of Cefoperazone use was entered on the criteria forms. The aspects of DUE of Cefoperazone included: indications, dosage regimens, drug awareness, disease etiologies, durations of treatment, adverse drug reactions & monitoring, and medical outcomes. The study was conducted from June 2003 to March 2004.

* Pharmacy Practice Unit, Department of Pharmaceutical Science, Ubon Ratchathani University
** Department of Nursing, Ratchathani University, Ubon Ratchathani
***Pharmacy students, Pharmaceutical Department, Ubon Ratchathani University
Results
Forty-two patients were involved in the study. Some patients were treated with Cefoperazone as empirical therapy (11.9 %) mainly for multiple infections. There were no patient data regarding their weights prior to the Cefoperazone dosage given, nor were there any history of drug allergy recorded in the medical charts. However, the given dosage in the regimens were generally appropriate, except for children due to the lack of information on their body weights. The most common diseases treated with Cefoperazone included: septicemia (50.58 %), respiratory tract infections (28 %), and neutropenic infections (21.42 %). Interestingly, there were no adverse drug reactions documented in the study. Only twenty-five patients completed treatment with Cefoperazone.

Conclusion
Generally, the use of Cefoperazone at Sapasithiprasong Hospital was appropriate. However, some crucial data related to the decisions made to prescribe Cefoperazone were missing. Limitations of the study need to be stated and actions taken to rectify them. Changes to the criteria forms based on the practical uses were required.

Keywords
Drug use evaluation, Cefoperazone.

Reprint request: Chaikoolvatana A. Pharmacy Practice Unit, Department of Pharmaceutical Science, Ubon Ratchathani University, Warinchumrab, Ubon Ratchathani, Thailand 34190.

Received for publication. November 21, 2005.
อนาคตของการรักษา: เนื่องจากมีการส่งเสริมใช้ Cefoperazone ค่อนข้างมาก ซึ่งอาจส่งผล
กระทบตามมาศักยภาพการติดยาด้วยเนื่องจากยากลุ่มนี้เป็น 3rd generation
ของ Cephalosporins ซึ่งควรจะมีมาตรการในการส่งเสริมอย่างครอบคลุม
หลากหลาย ยกตัวอย่างเช่น การรักษาขั้นต่ำและเป็นยาในปัจจุบัน ปัจจุบัน
ส่งเสริมให้รักษาควบคุมดีด้วยเรื่องของการส่งเสริมใช้อย่างไรก็ตาม ที่ผ่าน
มา ยังไม่มีการประเมินความเหมาะสมในการส่งเสริมใช้ Cefoperazone
และไม่มีแบบประเมินที่ให้กับบุคลากรในโรงพยาบาลใช้เพื่อประเมิน
การใช้ยาดังนี้ ผู้จัดทำศึกษาเรื่องการส่งเสริมแบบประเมินความ
เหมาะสมในการใช้ยา Cefoperazone ขั้นตอนก่อนนำไปทดลองใน
ผู้ป่วยในโรงพยาบาลสรรพสิทธิประสงค์

วัตถุประสงค์ : เพื่อพัฒนาระบบประเมินการใช้ยา Cefoperazone ที่ได้มาตรฐาน เพื่อ
ทดสอบประสีทธิภูมิการใช้งานของแบบประเมิน

รูปแบบการวิจัย : การศึกษาแบบย้อนหลัง (Retrospective Study)

สถานที่ทำการศึกษา : โรงพยาบาลสรรพสิทธิประสงค์

วิธีการศึกษา : ประกอบด้วย ขั้นตอนดังนี้ 1. การสร้างแบบประเมินความเหมาะสม
ในการใช้ยา Cefoperazone. 2. การประเมินความเหมาะสมในการส่ง
ใช้ยา Cefoperazone ในโรงพยาบาลสรรพสิทธิประสงค์ในขั้นตอน
การออกแบบประเมินนั้น เนื่องจากปัจจุบันไม่มีแบบประเมินที่ได้รับ
การตรวจสอบความถูกต้องจากผู้เชี่ยวชาญเฉพาะทางศาลสภาระ
และเกษตรศาสตร์ (Content Validation) ก่อนนำไปใช้จริง การศึกษาครั้งนี้
มีจำนวนผู้ป่วยทั้งสิ้น 42 ราย ซึ่งมีบริบทการใช้ยา Cefoperazone
ในปัจจุบันที่ทำการศึกษา ทั้งนี้ได้รับความร่วมมือจากโรงพยาบาล
โรงพยาบาลสรรพสิทธิประสงค์ และหน่วยงานของ
การประเมินการใช้ยา Cefoperazone มีดังนี้คือ ข้อบังคับ, หน่วยงานที่ใช้,
ข้อปฏิบัติระหว่างการใช้ยา, กลุ่มโรคที่ทำการรักษา, ระยะเวลาในการ
รักษา, อาการไม่พึงประสงค์, และผลการรักษา การศึกษาครั้งนี้ทำใน
ช่วงเดือนมิถุนายน 2546 – มีนาคม 2547
ผลการศึกษา:
ผู้ป่วยทั้งสิ้น 42 รายที่นำมาศึกษาในครั้งนี้ ส่วนใหญ่ใช้ยา Cefoperazone แบบ empirical therapy (11.9%) ซึ่งมีภาวะ Multiple infections อย่างไรก็ตามข้อมูลในเรื่องของน้ำหนักตัวผู้ป่วยไม่ได้แสดงไว้ในเวอร์ชัน ทำให้การประเมินขนาดยาที่ผู้ป่วยควรได้รับไม่สามารถประเมินได้ ไม่มีการระบุประทีปการฉีดยาของผู้ป่วยในเวอร์ชัน ทำให้การประเมินไม่สามารถทำได้ ในส่วนของขนาดยานี้ พบว่าผู้ป่วยส่วนใหญ่ได้รับขนาดมันมาสม ยกเว้นในรายผู้ป่วยเด็ก ที่ไม่มีข้อมูลเรื่องน้ำหนักทำให้ไม่สามารถประเมินความเหมาะสมได้ โรคที่มีการส่งใช้ยา Cefoperazone มากที่สุดได้แก่ Septicemia (50.58%), respiratory tract infections (28%), และ neutropenic infections (21.42%) ตามลำดับ ซึ่งในกลุ่มผู้ป่วยทั้งหมดที่ทำการศึกษานี้ไม่มีข้อมูลในเรื่องของอาการไม่พึงประสงค์ อย่างไรก็ตาม จากผู้ป่วยทั้งสิ้น 42 ราย มีเพียง 25 ราย ที่ได้รับการรักษาด้วยยา Cefoperazone จนครบระยะเวลาของการรักษา

วิจารณ์และสรุป:
โดยรวม การส่งใช้ยา Cefoperazone ในโรงพยาบาลสรรพสิทธิประสงค์อยู่ในเกณฑ์ที่ยอมรับได้ อย่างไรก็ตามข้อมูลที่สำคัญที่ใช้ในการประเมินการใช้ยาที่นี้ ไม่ได้ให้รายละเอียดในเวอร์ชันผู้ป่วย ทำให้ไม่สามารถที่จะประเมินได้ และการศึกษาในครั้งนี้ยังมีข้อจำกัดในการวิจัยหลายประการที่ยังคงต้องได้รับการปรับปรุงแก้ไขต่อไป รวมทั้งแบบประเมินที่สร้างขึ้น ยังคงต้องได้รับการปรับปรุงให้มีคุณภาพสูงขึ้น ที่นี้จะมีการนำไปใช้ต่อไป

คำสำคัญ:
การพัฒนาระบบประเมินการใช้ยา, ยา Cefoperazone.
Drugs Use Evaluation (DUE) is a standard procedure in hospitals to limit unnecessary drug use, control spending and reduce casualties. It is also used by hospital administrations as a strategy of quality assurance. DUE usually occurs, especially with the use of antibiotics, when medications are expensive, having high toxicity, narrow therapeutic index and/or high resistance to the drugs. Such drugs need to be monitored closely when being used with patients. \(^{1,2}\)

Cefoperazone is a third-generation of Cephalosporin. It inhibits gram positive and gram negative bacteria, and anaerobic bacteria.\(^{3,4}\) It has been used to treat bacterial infections, such as urinary tract infection (UTI), lower respiratory tract infection (LRI), abdominal infections and septicemia.\(^{5-7}\) A normal dosage regimen is 2-4 G/day q 12 for adults, and 25-50 mg/kg/day q 6-12 for children. The common side effects include: rash, nausea, vomiting, diarrhea and hepatotoxicity. Pregnant and breast-feeding women should avoid using Cefoperazone due to its teratogenic effects.\(^{8}\) Because of its limitations such as high cost, drug resistance and adverse effects, Cefoperazone is required to undergo Drug Use Evaluation (DUE).\(^{9,10}\)

Sapatisithiprasong Hospital in Ubon Ratchathani is a regional hospital of less than 1,000 beds serving seven provinces in Northeastern Thailand. Since 2000, the hospital has spent approximately 10 million baht on Cefoperazone.\(^{11}\) The increased use of Cefoperazone has raised serious concerns regarding its safety and efficacy. Additionally, there have been no standard criteria of DUE of Cefoperazone.\(^{12}\)

As a result, this study is aimed to develop a standard DUE form for Cefoperazone, and to evaluate the appropriate use of Cefoperazone at Sapatisithiprasong Hospital, Ubon Ratchathani.

Method

The study was of a retrospective-descriptive design. Patients enrolled in the project were in-patients treated with Cefoperazone at Sapatisithiprasong Hospital from June 2003 to March 2004. It involved two steps: development of a DUE form and evaluation of the appropriate use of Cefoperazone:

1. A DUE form was developed based on Cefoperazone drug monograph, including indications, dosage regimens, drug awareness, disease etiologies, durations of treatment, adverse drug reactions and monitoring, and medical outcomes. Additionally, the drug monograph was collected via clinical database resources that were standard, reliable, appropriate and correctable, such as Medline, Micromedex, USP DI and Pub-Med.\(^{13-17}\) Primary resources, for example, randomized controlled trials, meta-analysis and a cohort study, related to the use of Cefoperazone were also implemented to develop a standard criteria form. A final DUE form was sent to three clinical experts (two doctors and one pharmacist) for content validation. The contents were modified based on their comments prior to a study.

2. Sapatisithiprasong Hospital Administrative Committees allowed the authors to access the patient medical charts and collect patient data related to Cefoperazone use. The inclusion criteria of the patients involved all patients hospitalized and treated with Cefoperazone (either IV, IM) from June 2003 to March 2004. Three clinical pharmacists routinely involved with DUE of antibiotics use at Sapatisithiprasong Hospital filled out a DUE form for Cefoperazone. If the patient
medical charts were not available at the time of the study, those cases were automatically excluded. The data were analyzed by descriptive analysis, such as frequencies and percentages.

Results

1. Demographic data

There were forty-two patients from the Patient Chart Unit who were treated with Cefoperazone from June 2003 to March 2004. Sixty percent were males and 40.5% were above forty-nine years of age. Nineteen percent were admitted to the ICU Neuro Unit, 19% to the ICU Surgery Unit and 9.5% to the General Medicine Unit.

2. The appropriate use of Cefoperazone

Due to Cefoperazone was divided into seven different aspects:

2.1 Indications

Patients were prescribed Cefoperazone as empirical therapy in five cases (11.9%) and as specific therapy in 37 cases (88.1%). The main indications for empirical included severe infections and septicemia. The specific therapies of Cefoperazone also included acinetobacter infections (59.5%) followed by gm(-)ve bacterial infection (24.3%) (see table 1).

2.2 Dosage Regimens

Cefoperazone was prescribed for thirty-six adult patients (85.7%), four adult patients with renal impairment (9.5%) and two children (4.8%). Thirty-three adults were given an appropriate normal dose of between 1-2 G IV q 12. However, three adult patients were given a higher dose of 4 G Cefoperazone IV q 12 for severe infections. Four patients with renal impairment were treated with a full dose of Cefoperazone 1-2 G IV q 12, as it mainly excreted via bile duct rather than the kidneys. Thus, dose adjustments in renal impairment patients were not necessary. Two children were not evaluated due to the lack of body weight data.

2.3 Drug awareness

The results of drug awareness are shown in Table 2:

<table>
<thead>
<tr>
<th>Indications</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>Culture and Sensitivity</td>
<td></td>
</tr>
<tr>
<td>1. Gm(+)ve aerobic bacterial infection</td>
<td>1</td>
</tr>
<tr>
<td>2. Gm(-)ve bacterial infection</td>
<td>9</td>
</tr>
<tr>
<td>3. Anaerobic and mixed aerobic bacterial infection</td>
<td>0</td>
</tr>
<tr>
<td>4. Acinetobacter sp. infection</td>
<td>25</td>
</tr>
<tr>
<td>5. Miscellaneous</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 1. Indications for specific therapy of Cefoperazone (n=37).
Table 2. Drug awareness of Cefoperazone (n=42).

<table>
<thead>
<tr>
<th>Items</th>
<th>Outcomes [frequency, (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weighed patient prior to drug administration</td>
<td>Yes* 0 (0)</td>
</tr>
<tr>
<td>2. Checked CBC differential within 48 hours of drug administration</td>
<td>No 35 (83.3)</td>
</tr>
<tr>
<td>3. Checked drug allergy, especially β-lactam antibiotic allergies</td>
<td>N/A 7 (16.7)</td>
</tr>
<tr>
<td>4. Checked Scr or Ccr within 48 hours of administration</td>
<td>Yes* 12 (28.6)</td>
</tr>
<tr>
<td>5. For specific therapy, administered Cefoperazone within 48 hours of</td>
<td>No 27 (64.3)</td>
</tr>
<tr>
<td>6. For empirical therapy, c/s is routinely ordered (n=5)</td>
<td>N/A 3 (7.1)</td>
</tr>
<tr>
<td>7. For empirical therapy, c/s is reported, drug of choice is considered</td>
<td>Yes* 16(38.1)</td>
</tr>
<tr>
<td>administration within 24 hours (n=5)</td>
<td>No 23(54.8)</td>
</tr>
</tbody>
</table>

* Yes = performed
No = not performed
N/A = not applicable due to lack of data
c/s = culture and sensitivity

2.4 Disease etiologies

The common diseases treated with Cefoperazone included miscellaneous etiologies (16 cases), respiratory tract infections (RTI) (11 cases), neutropenic infections (9 cases) (Figure 1). Interestingly, septicemia was the most common miscellaneous etiology treated with Cefoperazone (8 out of 16 cases). Pneumonia was the most common RTI treated with Cefoperazone (5 out of 11) (Figures 1, 2 and 3).

2.5 Durations of Cefoperazone treatment

Fifteen patients (35.7 %) were treated with Cefoperazone for less than fourteen days and ten patients (23.8 %) for more than fourteen days. Thirteen cases (31 %) died due to disease complications (see Table 3).

2.6 Adverse drug reactions

There were no available data regarding adverse drug reactions to Cefoperazone in the patient medical charts. As a result, it was not appropriate to evaluate the incidence of such reactions in the study.

2.7 Medical outcomes

Twenty out of forty-five patients were stopped treatment for reasons such as death, treatment refusal and treatment changes. Thus, only twenty-five patients completed treatment with Cefoperazone. There was an improvement shown in 59.5 % of the patients by a drop in body temperature. However, they were all considered to be clinically better when the full course of Cefoperazone was completed. Interestingly, no culture and sensitivity data were collected after the completion of the courses of Cefoperazone.
Figure 1. The most common diseases treated with Cefoperazone (n=42).
1 = Abdominal infection
2 = Biliary tract infection
3 = Gonorrhea
4 = Gynecologic infection
5 = Neutropenic infection
6 = Osteomyelitis
7 = Respiratory tract infection
8 = Urinary tract infection
9 = Miscellaneous infections

Figure 2. Miscellaneous Infections treated with Cefoperazone (n=16).
1 = Septicemia (8)
2 = Multiple infections (2)
3 = Fungal infection (1)
4 = Comial pullo (1)
5 = SDM gm (-)ve (1)
6 = Head injury (1)
7 = ASD (1)
8 = Severe infection (1)
Figure 3. The most common Respiratory Tract Infections (RTI) treated with Cefoperazone (n=11).

1 = Pracheotomy
2 = Pneumonia
3 = CA lung
4 = Laryngeal injury
5 = Upper chest injury
6 = COPD

Table 3. Durations of Cefoperazone treatment (n=42).

<table>
<thead>
<tr>
<th>Items</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>1. Less than 14 days</td>
<td>15</td>
</tr>
<tr>
<td>2. More than 14 days</td>
<td>10</td>
</tr>
<tr>
<td>3. Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>3.1 Death from medical complications</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Lack of medications</td>
<td>1</td>
</tr>
<tr>
<td>3.3 Refusal of treatment</td>
<td>1</td>
</tr>
<tr>
<td>3.4 Changed treatment</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>
Discussion

Thirty-seven of the patients in the study were treated with Cefoperazone as specific therapies. However, two of them were reported to have rejected the treatment or culture/sensitivity data were lost.

Most patients received appropriate dosage regimens of Cefoperazone. However, two children received 500 mg IV q 12 without body weight data. As a result, it was difficult to evaluate the appropriateness of this dosage and it may be dangerous to initiate a dose of antibiotics in children without such information. Three severely infected patients were given inappropriate doses of Cefoperazone (1-2 G IV q 12). These patients should have been given higher doses (4 G IV q 12) to treat severe infection.

Regarding drug awareness, there was no body weight data recorded in the patients’ medical charts. The reasons for this may be that healthcare practitioners forgot to record the weights or the patients were unable to measure their weights due to being unconscious and/or the severity of the disease did not allow them to.

Additionally, CBC data were not collected in most cases. It is important that CBC data must be collected prior to the initiation of Cefoperazone as it may cause bleeding and toxicity of medications. In one study, a case of hypoprothrombinemia was reported in a patient receiving 2 G Cefoperazone IV q 8 for seven days. [16]

Furthermore, allergy history data were not available in the medical charts. It is important to know whether the patient has a history of drug/substance allergies. Cefoperazone has a B-lactam ring structure similar to penicillin. Thus, if patients have a history of penicillin allergy, there may also be a chance of a cross-allergic reaction to cephalosporins. [19]

Results also showed that Cefoperazone was mainly given within 48 hours of culture and sensitivity being reported via specific therapy. The reason was it decreased the incidence of drug resistance and increased the efficacy of therapy. However, seventeen cases were reported to have not reached the criteria. This might be because of time spent in pathogen growth.

Thirty percent of the patients died during Cefoperazone treatment due to medical complications. Of these, only 35 percent of them were completely treated with Cefoperazone. It is possible that the longer the treatment with Cefoperazone, the more serious an adverse drug reaction could be. Unfortunately, data relating to adverse drug reactions to Cefoperazone were not available to the study. Some adverse drug reaction cases may not have been recorded in the medical charts due to healthcare practitioners forgot to state patients’ adverse events or adverse events ceasing after stopping Cefoperazone. The authors, hereby, suggest a completion of the concurrent designed study to evaluate adverse drug reactions to Cefoperazone.

Only twenty-five patients completed the full course of treatment with a favorable medical outcome, including reduction in temperature. Significant information on the failure of Cefoperazone was not available, not to mention unclear records of deaths, refusals and changes of the treatment.

Limitations

1. As it was a retrospective-designed study, the evaluation depends upon the medical charts
available at the time. Such charts may not contain all required information. Therefore, it is recommended to perform a concurrent DUE study to gather updated sufficient data.

2. The number of cases is small due to such factors as patient deaths, medication changes and treatment rejection. As a result, the reliability of the outcomes in some particular areas is limited.

3. The use of a standard DUE criteria form was confined to one hospital. It is necessary to involve other hospitals to gain more feedback and evaluation.

4. There is no drug cost evaluation in the study. It might be useful to focus on price and the use of Cefoperazone in the hospital. It would be more beneficial to the committees to consider the hospital budget.

5. Drug allergies and adverse drug reaction data were not made available for evaluation in the study. This information is key to drug safety. Thus, a prospective study might be an alternative way.

6. There are a number of uncontrollable factors that may interfere with the results of this study. For example, there were some patients to whom Cefoperazone was not administered within 48 hours of culture and sensitivity being reported. The reasons behind this might have been the variation of time spent in pathogen growth, and the hospital had so serve a large number of patients daily, this could have been another cause of culture and sensitivity delay.

Suggestions

- The DUE form still needs to be modified prior to public use. More evaluation of the appropriateness and reliability of the form should be performed.

- More DUE of Cefoperazone should be conducted in different locations for comparison of the results.

- DUE process should be made available to the public.

- The effects of the use of Cefoperazone after the completion of DUE should be considered to assist in the assessment of the appropriate use of other medications.

- More DUE should be conducted for antibiotics that have high toxicity, narrow therapeutic index and/or high risk of resistance to the drugs.

Conclusion

This study is aimed both to develop a criteria form for DUE of Cefoperazone and to evaluate the use of Cefoperazone at Sapasithiprasong Hospital, a regional hospital in Northeastern Thailand. The drug monograph criteria of Cefoperazone included indications, dosage regimens, drug awareness, disease etiologies, durations of treatment, adverse drug reactions and monitoring, and medical outcomes. The results of DUE of Cefoperazone showed that both indications and dosage regimens of Cefoperazone used for in-patients were appropriate. However, the drug awareness was not satisfactory due to some limitations including the lack of data of body weights, absence of allergy histories, and no CBC differential checking. These limitations might have caused a number of drug-related problems. Moreover, adverse drug reaction records could not be evaluated in the study due to the lack of the data. Cefoperazone is normally a first-line drug used for septicemia,
respiratory tract infections and other infectious diseases.

Overall, the use of Cefoperazone at Sapasithiprasong Hospital was satisfactory, but there was a need to address certain issues. Further evaluations in other local hospitals are needed for more precise and reliable results.

Acknowledgments
The authors wish to thank Sapasithiprasong Hospital staff, including doctors and pharmacists for their great cooperation. Also, thanks to Asst. Prof. Summana Moolasarn for all help and support. Finally, we would like to express our gratitude to all pharmacy students at Pharmacy Department, Ubon Rajathani University for their enrolment.

References

12. Prunkngarpun S. An evaluation of Cefotaxime, Medical Department, Kalasin Hospital. JPHS.

16. USP DI. Drug Information for Health Care Professional. Keyword: Cefoperazone

