
Advanced technology permits early diagnosis of most congenital deficiencies in hematopoietic stem cells (HSC) and numerous metabolic disorders. Postnatal bone marrow–derived HSC has been successfully applied in the treatment of pediatric patients affected with a broad spectrum of congenital disorders and inborn errors of metabolism. There are significant problems with postnatal bone marrow transplantation, however. By the time that most of these children are considered for transplantation, they already have been compromised by their diseases. Other two problems are the need for recipient bone marrow conditioning and suppression using chemotherapy and radiation, and the probability of graft–versus–host disease (GVHD), which is life-threatening condition. Performing the transplant before immunocompetence is well-established, ie, in utero HSC transplantation, may circumvent these difficulties. The combination of fetal immunotolerance and fetal marrow space make the fetus an excellent transplant recipient. Experiments on the mouse, sheep and rhesus monkey have indicated that in utero transplantation is feasible. Human trials are ongoing.

Key words: Bone marrow transplantation, In utero HSC transplantation.

Reprint request: Tanawattanacharoen S, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Received for publication. July 10, 1996.
ความมิตรปฏิบัติต่อกันเนื่องของการ ซึ่งส่วนใหญ่เป็นความมิตรปฏิบัติที่กล่าวถึงทางมานะการพิจารณา เป็นสาเหตุของการตายและทุพพลภาพในการเกิดกิจการที่สำคัญอันเกี่ยวกับผลเสียของการสูญเสียสิ่งแวดล้อม และซึ่งกันและกันอย่างมาก ในปัจจุบันเป็นการพิจารณาการวินิจฉัย และการตัดสินใจในปัจจุบันนี้ความมิตรปฏิบัติอาจมีการตัดสินใจที่มีความสอดคล้องกันไม่สามารถรักษาให้ผ่านได้

สิ่งสำคัญในการพิจารณาคือการให้คำปรึกษาและแนะนำ(1) โดยเฉพาะอย่างยิ่งในกลุ่มที่มีความเสี่ยงสูงหากมีการให้คำปรึกษาและแนะนำก่อนการทำการหรือก่อนด้วยการให้คำปรึกษาและแนะนำในเรื่องการวินิจฉัยและการตัดสินใจตามที่ระบุไว้ การตัดสินใจให้คำปรึกษาและแนะนำในกลุ่มนี้มีความจำเป็นที่จะมีความมิตรปฏิบัติต่อกันเนื่องในบางประเภทอยู่ในการให้คำแนะนำตามแบบสอบถามความเพื่อตรวจคัดกรองก่อนการตรวจวินิจฉัยก่อนคลอด (Prenatal diagnosis questionnaire)(2) เพื่อประกอบการตัดสินใจต่อไป

จากการพิจารณาทางนิติการตรวจวินิจฉัยการค้นหาการก่อมิตรศักย์และการพิจารณาทางนิติการ (Genetic engineering และ Molecular biology ในปัจจุบันนี้สำหรับการวินิจฉัยความมิตรปฏิบัติต่อกันเนื่องในทางที่คลอดคลาดได้หลายโรค นำสู่การพิจารณาทางนิติการเข้าที่ต่อไป

การปลูกถ่ายเนื้อเยื่อ (Tissue Transplantation)

ภาษาหลักจากที่ประสบความสำเร็จในการปลูกถ่ายอวัยวะต่างๆ (Organ transplantation) ให้แก่ผู้ป่วยที่มีความเสี่ยงต่อการรักษาต่อไปสู่การปลูกถ่ายระดับเซลล์ (Cellular transplantation) เนื่องจากหลากหลายผลผลการเกิดประโยชน์หลักการ กล่าวคือ ทำให้ได้รับความรักษาได้ง่ายกว่า สามารถเลือกตำแหน่ง ชนิดและปรับประเด็นเกี่ยวกับเซลล์ที่จะนำมาปลูกถ่าย ตลอดจนสามารถเก็บรักษาไว้ใช้ภายหลังได้โดยเซลล์ยังมีชีวิตอยู่ (โดยวิธี Cryopreservation) มีรายงานผลการศึกษาตลอดปลูกถ่าย Hematopoietic stem cells (HSC),pancreatic islet cells และ Hepatocytes อย่างไรก็ตามการศึกษาในเรื่องนี้ยังยังไม่มีการนำมาใช้ในการรักษาอย่างจริงจัง เนื่องจากยังมีข้อจำกัดหลายประการ ยกเว้นกรณีของการปลูกถ่ายไส้กระเพาะ (Bone marrow transplantation) ซึ่งพบว่าใช้รักษาได้ผลในหลายๆโรค(3,4) ซึ่งต้องทดลองในทางที่ต่อไป

ในการปลูกถ่ายไส้กระเพาะในการคลอดคลาดอาจมีปัญหาบางประการ กล่าวคือการที่คลอดคลาดและพร้อมสำหรับการปลูกถ่ายไส้กระเพาะนี้จะมีความมิตรปฏิบัติ เพื่อให้การรักษาได้สำเร็จของโรคที่ว่าที่ต่อไป ทำให้การรักษาที่ไม่สามารถกับปัญหาได้ทันท่วงทังหรือไม่ได้ผลดีมี แต่จากนั้นยังมีปัญหาเรื่องการเกิด GVHD และการเกิดโรคจากการปลูกถ่ายไส้กระเพาะ ผลการปลูกถ่าย GVHD ทำให้เกิดความสัมพันธ์ใน การปลูกถ่ายเช่น ซึ่งปัญหาหลักเล่าว่าจากที่ทำให้การรักษาไม่ได้ผลดีแล้ว ยังทำให้เกิดภาวะแทรกซ้อนต่างๆตามมาได้ด้วย

urar ใบหน้ากิจการ

การทำให้ผลิตภัณฑ์ยาบางชนิด (The Fetus as a Host)

การทำให้ผลิตภัณฑ์ยาบางชนิดเป็นผู้รับในยูเซคลิกสำหรับการปลูกถ่าย HSC เนื่องจากความพร้อมในการรับของเซลล์ทำให้ปลูกถ่ายโดยไม่เกิดการปฏิกิริยา (Graft rejection) ซึ่งผลการปลูกถ่าย HSC จะต้องทำเกิดเป็นกลุ่มที่มีการปลูกถ่าย HSC จะต้องทำเกิดเป็นกลุ่มที่มีการปลูกถ่ายโดยไม่เกิดการปฏิกิริยา การปลูกถ่าย HSC ทำให้เกิดการปฏิกิริยานี้ เนื่องจากไม่มีความจำเป็นต้องตรวจหา HLA matching ไม่ต้องใช้ตลาด
ตารางที่ 1. ความผิดปกติทางพันธุศาสตร์ที่ให้การรักษาโดยการปลูกฝังไขกระดูกใน-warningทดลอง

1. ความผิดปกติในระบบเม็ดเลือด

1.1 ความผิดปกติของเม็ดเลือดแดง
Sickle cell disease, Thalassemia major, Hereditary spherocytosis (murine), Fanconi anemia, Pyruvate kinase deficiency (canine)

1.2 ความผิดปกติของ Lymphocytes
Severe combined immunodeficiency disorder (sex linked)
Severe combined immunodeficiency (adenosine deaminase deficiency)
Wiskott–Aldrich syndrome

1.3 ความผิดปกติของ Granulocytes
Chronic granulomatous disease, Chediak–Higashi syndrome, Infantile agranulocytosis (Kostmann), Cyclic neutropenia (canine), Lazy leukocyte syndrome (neutrophil actine deficiency), Neutrophil membrane GP–180, Cartilage–hair syndrome

2. Inborn errors of metabolism

2.1 Mucopolysaccharidoses
MPS I Hurler disease/Hurler–Scheie syndrome
MPS II Hunter disease
MPS IIIB Sanfilippo B
MPS IV Morquio
MPS VI Maroteaux–Lamy syndrome

2.2 Mucolipidoses
Gaucher disease, Metachromatic leukodystrophy, Krabbe disease, Niemann–Pick disease, Beta glucuronidase deficiency (murine), Fabry disease, Adrenal leukodystrophy

2.3 ความผิดปกติของ Osteoclast
Infantile osteoporosis
การปฏิกิริยา HSC ในครรภ์ (In Utero HSC Transplantation)

ในปี พ.ศ. 2488 Owen พบว่าการรักษาครรภ์ HSC ระหว่างครรภ์ที่เป็นครรภ์ก่อน ทำให้เกิดเป็น Hematopoietic chimerism ซึ่ง(14) จึงทำให้เกิดความคิดในเรื่องการปฏิกิริยา HSC ให้กับการในครรภ์เพื่อรักษาโรคมะเร็งด้วยเนื้อเยื่อมีการศึกษาในสัตว์ทดลองก่อน โดยเริ่มจากสัตว์ที่มีขนาดเล็กคือหมู และขนาดใหญ่ขึ้นตามลำดับคือแพะและสัตว์ทดลองต่อ

การศึกษาในสัตว์ทดลอง

ในปี พ.ศ. 2509 Sellers และคณะ ได้รายงานความสำเร็จในการปฏิกิริยา HSC ให้กับสัตว์ในครรภ์เป็นครั้งแรก โดยเกิด Engraftment สามารถรักษาโรคติดเชื้อของหมูดังกล่าว และคงอยู่จนกว่าเลือดเสียชีวิตไป(15)

ในปี พ.ศ. 2525 Zanjani และคณะ ประสบความสำเร็จในการปฏิกิริยา HSC ในสัตว์ในครรภ์จนเกิด Engraftment แต่ละรายจากภาวะ GVHD ในภายหลัง(16) ต่อมาได้มีการการทดลองจำนวน T cell ใน HSC ที่จะนำมาสู่การทดลอง จนกระทั่งในปี พ.ศ. 2529 Flake และคณะ ได้นำ HSC ที่เคยจากตัวของสัตว์มาในการปฏิกิริยาจนประสบความสำเร็จโดยไม่เกิดภาวะ GVHD(17)

อย่างไรก็ตาม นักการศึกษาในคนมีการศึกษาดังกล่าวในสัตว์ ซึ่งเป็น Nonhuman primate model และประสบความสำเร็จโดย Harrison และคณะ ในปี พ.ศ. 2532(18-19) หลังจากนั้นมีการศึกษาการปฏิกิริยา HSC ในสัตว์ม้า التربيةในฟองหาขั้วเวลาที่เหมาะสมในการปฏิกิริยาเพื่อนำมาประยุกต์ใช้ในมนุษย์ที่ไม่ผิด

ความมิตรปกติทำพันธุ์สัตว์ที่อาจให้การรักษาโดยการปลูกฝัง HSC ในครรภ์ได้แสดงไว้ในตารางที่ 2
ตารางที่ 2. ความผิดปกติทางพันธุศาสตร์ที่อาจให้การรักษาโดยการปลูกฝัง HSC ในครรภ์(8)

1. ความผิดปกติในระบบเลือด
 1.1 ความผิดปกติของเม็ดเลือดแดง
 Sickle cell disease, Thalassemia major, Fanconi anemia
 1.2 ความผิดปกติของ Lymphocytes
 Severe combined immunodeficiency disorder (sex linked)
 Severe combined immunodeficiency (adenosine deaminase deficiency)
 Wiskott–Aldrich syndrome
 1.3 ความผิดปกติของ Granulocytes
 Chronic granulomatous disease, Chediak–Higashi syndrome,
 Infantile agranulocytosis (Kostmann)

2. Inborn errors of metabolism
 2.1 Mucopolysaccharidoses
 MPS I Hurler disease/Hurler–Scheie syndrome
 MPS II Hunter disease
 MPS IIIB Sanfilippo B
 MPS IV Morquio
 MPS VI Maroteaux–Lamy syndrome
 2.2 Mucolipidoses
 Gaucher disease, Metachromatic leukodystrophy, Krabbe disease,
 Niemann–Pick disease, Fabry disease, Adrenal leukodystrophy
 2.3 ความผิดปกติของ Osteoclast
 Infantile osteoporosis

นอกจากนี้ ในปีพ.ศ. 2535 Zanjani และคณะ ได้ทดลองนำ HSC ที่มาจากด้านของทารกในครรภ์ของคนไปปลูกฝังให้กับสุนัขในครรภ์ พบว่าสามารถเกิด Engraftment ซึ่งคงอยู่ได้และตรวจพบจับกลุ่มเม็ดเลือดเม็ดขยักยิ้ม 2 ปี(20)

การศึกษาใหม่

ในปีพ.ศ. 2532 Linch และคณะ ได้นำ T cell-depleted maternal bone marrow HSC มาปลูกฝังให้กับทารกในครรภ์ซึ่งเกิดภาวะ Severe hemolytic anemia จาก Rh isoimmunization ทารกมีชีวิต ตลอดจนหลังคลอดได้ แต่ยังไม่พบการเกิด Engraftment ภายหลังคลอด(21)

ในปีพ.ศ. 2532 มีรายงานการประสบความสำเร็จในการปลูกฝัง HSC ให้กับทารกในครรภ์สำเร็จเป็นรายแรก โดย Touraine ทำฟาร์มปลูกฝัง Fetal liver HSC และ Thymus ให้กับทารกในครรภ์ ซึ่งเป็นโรค Bare lymphocyte syndrome (BLS) และพบว่า
เกิด Engraftment 10% หลังจากการก่อตัวมีการปลูกถ่าย Fetal liver HSC ให้ซ้ำ 7 ครั้ง แต่พบว่าไม่มีการเกิด Engraftment เหมือน (13,22)
หลังจากนั้น ในปีพ.ศ. 2533 Touraine ได้ทำการปลูกถ่าย Fetal liver HSC ให้แก่ทารกในครรภ์ที่เป็นโรค Severe combined immunodeficiency หรือ SCID และ Beta-thalassemia แต่สามารถตรวจสอบการเกิด Engraftment ได้โดยวิธี DNA fingerprint analysis เท่านั้น (13,23) และในปีเดียวกันนี้ Slavin และคณะได้ปลูกถ่าย Paternal bone marrow HSC ให้แก่ทารกในครรภ์ที่เป็นโรค Metachromatic leukodystrophy 2 ราย และ Beta-thalassemia 1 ราย แต่ไม่เกิด Engraftment เหมือน (23)
ในปีพ.ศ. 2535 ที่ UCSF ได้ทำการปลูกถ่าย HSC โดยใช้ T cell-depleted maternal bone marrow HSC ให้กับทารกในครรภ์ 3 ราย ซึ่งเป็นโรค Alpha-thalassemia, SCID และ Chediak-Higashi syndrome ตามลำดับ ในการกระทำพบ Microscopic engraftment ซึ่งตรวจยืนยันด้วย วิธี Fluorescent in situ hybridization (FISH) ส่วนใน 2 รายหลังไม่พบการเกิด Engraftment (6)
ต่อมาในปีพ.ศ. 2536 Thilaganthan และ Nicolaides ได้ทำการปลูกถ่าย T cell-depleted maternal bone marrow HSC ให้กับทารกในครรภ์ที่เป็น Rh isoimmunization ซึ่งไม่เกิด Engraftment แต่เป็นที่สนใจว่าการไม่แสดงปฎิการิยาทางภูมิคุ้มกันต่อเนื้อเยื่ออวัยวะทั้งหมด แต่แสดงปฏิกิริยาทางภูมิคุ้มกันอย่างเล็กน้อยที่กับ Antigen อื่นๆ (24)

อนาคตของการปลูกถ่าย HSC ในครรภ์

เนื่องจากวิวัฒนาการด้านวิธีการวินิจฉัยที่เกี่ยวกับการคลอด (Prenatal diagnosis) ทำให้สามารถวินิจฉัยความผิดปกติหลายประการของการเกิดเร็วและแน่นอนขึ้น จึงเป็นที่น่าจะให้ผลต่อการคลอดในครรภ์ที่มีที่ย้ายท้องภูมิคุ้มกันได้ตามที่สามารถให้การรักษาโดยปลูกถ่ายอาการภูมิคุ้มกันหลังการคลอด ทั้งนี้จะสามารถให้การรักษาได้ด้วยการย้ายย้ายภูมิคุ้มกันเพื่อการรักษาที่สอดคล้อง รวมไปถึงการรักษาโดย Gene therapy ด้วย อย่างไรก็ตามจากการศึกษาในคนที่มีภูมิคุ้มกันถ่ายกระจายเท่านั้นที่พบการเกิด Engraftment ซึ่งแสดงถึงผลิตภัณฑ์หลักการรักษา (13,22) ยังมีความอิสระมากมายที่จะต้องการตัดสินใจค่าผลการตัดสินใจในการปลูกถ่าย HSC ให้แก่ทารกในครรภ์ เช่น เวลาที่เหมาะสมในการปลูกถ่าย การเตรียมการ การทำให้ประสิทธิภาพ (25) การเตรียมเพื่อสนับสนุนการ HSC (26) และการจัดตั้ง Fetal tissue bank (27) HSC ที่มีความจำเป็นจากการเกิดครรภ์หรือผู้ใหญ่จำนวน HSC ที่เหมาะสมตลอดจนวิธีการที่สะดวกและเหมาะสมที่สุดในการปลูกถ่าย เช่น มีการศึกษาพบว่าเทคนิคการปลูกถ่าย HSC ให้กับทารกในครรภ์โดยน่า Embryofetoscopy เข้ามาช่วย พบว่าได้ผลดี (28) การศึกษาเพื่อให้ได้ค่าตอบสัมพันธ์กับผลลัพธ์ว่าจะเป็นวิธีการที่จะนำไปสู่ความสำเร็จในการรักษาทารกในครรภ์ที่เป็นโรคต่ำกว้างวิธีหลักส่วน ซึ่งหากประสบผลสำเร็จจะสามารถลดการตายทางครอบครัว สังคม และเศรษฐกิจของประเทศชาติเป็นอย่างมาก

ธนาคารเนื้อเยือกทารก (Fetal Tissue Bank)

ตั้งที่สำมามแล้ว การใช้ HSC ที่นำมาจากการเกิดครรภ์ครบช่วงไปจนถึงการเกิดครรภ์ในงานวิจัยหลายประการ ที่มีปัญหาสำคัญที่เกิดขึ้นได้แก่ปัญหาตัวเจริญเติบโต มีความพยายามหลีกเลี่ยงปัญหาดังกล่าวโดยใช้ HSC จากลูกต่วงจากสายพันธุ์ของท้องถิ่น และจัดตั้ง Fetal tissue bank ขึ้น ปัญหาที่สามารถคิดเลือกที่นำมาใช้มีปริมาณจำกัดจากปริมาณ HSC ที่นำมาปลูกถ่ายไม่เพียงพอจะไม่สามารถจัดหาเพิ่มเติมได้ (28,29)

ต่อมามีการพยายามแยก HSC จากลูกตัวเกิดจากการเกิดหรือการตัดครรภ์เอกลักษณ์ใช้
19. Harrison MR, Crombleholme TM, Slotnick NR, Golbus MS, Tarantal AF, Zanjani ED. In utero transplantation of fetal liver hematopoietic stem cells in monkeys. Lancet 1989 Dec 16; 2 (8677) 1425-7

