Acute hemorrhagic pancreatitis due to organophosphate insecticide.

A 65 year-old Chinese woman, ingested an unknown amount of Baygon about 2 hours prior to admission. The patient developed anticholinergic inhibitor intoxication which was confirmed by the very low level of enzyme cholinesterase. The organophosphate and carbamate compounds are found in the bile, stomach content and kidneys at necropsy. Acute hemorrhagic pancreatitis was found at necropsy as the very rare complication of organophosphate insecticide.

Reprint request: Moolla-or P, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Received for publication. July 13, 1990.

* Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University.
ประยอง มูลอด และ รังษีช์ ธงสกุล

ผู้ป่วยหญิงเจ็บอายุ 65 ปี มาโรงพยาบาลดูแลอาการโดยมีประวัติว่า สุขภาพภูมิคุ้มกันสมบูรณ์และมีอาการสูญปัสสาวะ โดยมีกระเพาะยาเหล้าบางภูมิปัญญาอย่างเข้มข้น ๆ ผู้ป่วย ผู้ป่วยได้รับการที่นิวอินทาวิเคราะห์การนำสารไปยังระบบประสาทที่เกิดจากการสูญเสีย ผู้ป่วยได้รับการรักษาอาการแท่นกิ้ง แก้กรรมอาจกล่าวได้ว่า ได้รับการดูแลต่อเนื่อง 6 วัน ผลการตรวจพยาธิพบว่าผู้ค้ามีมีการดักกลับแบบมีผลิตออกฤทธิ์หลักที่ชื่อเป็นกลุ่มยาเหล้าอาการผิดปกติ (organophosphate และ cabamate) ในการรักษา ไฟล์และน้ำหนักต่ำภาย
A 65 year-old Chinese woman, was found unconscious by her daughter about 2 hours prior to admission to emergency room at Chulalongkorn hospital. The daughter also discovered a can of green Baygon beside the patient.

Physical examination *(Collect from Patient’s chart)*

A comatose elderly Chinese woman, her pupils were pinpoints and did not react to light, Doll’s eye sign was negative. Pulse rate was 160/min. Her blood pressure was 120/70 mmHg, and her respiration stopped (apnea) few minutes later. The patient also developed diarrhea with watery stool. She did not regain consciousness from the time of her admission until she died 6 days later.

Laboratory findings *(HD = Hospital day)*

<table>
<thead>
<tr>
<th>CBC</th>
<th>HD1</th>
<th>HD2</th>
<th>HD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g %)</td>
<td>11.1</td>
<td>16.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Hct (vol %)</td>
<td>45</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Wbc (/cumm)</td>
<td>16,700</td>
<td>27,200</td>
<td>10,500</td>
</tr>
<tr>
<td>N</td>
<td>70</td>
<td>97</td>
<td>60</td>
</tr>
<tr>
<td>band</td>
<td>5</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>22</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>platelets</td>
<td>adequate</td>
<td>adequate</td>
<td>adequate</td>
</tr>
</tbody>
</table>

Electrolytes

<table>
<thead>
<tr>
<th>HD1</th>
<th>HD2</th>
<th>HD3</th>
<th>HD4</th>
<th>HD5</th>
<th>HD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (mmol/L)</td>
<td>153</td>
<td>163</td>
<td>168</td>
<td>147</td>
<td>143</td>
</tr>
<tr>
<td>K (mmol/L)</td>
<td>2.8</td>
<td>4.2</td>
<td>4.3</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Cl- (mmol/L)</td>
<td>105</td>
<td>128</td>
<td>135</td>
<td>140</td>
<td>107</td>
</tr>
<tr>
<td>CO2</td>
<td>15</td>
<td>28</td>
<td>16</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Blood sugar (mg %)</td>
<td>-</td>
<td>495</td>
<td>346</td>
<td>182</td>
<td>260</td>
</tr>
<tr>
<td>BUN (mg %)</td>
<td>9</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEA (560/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketone</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum cholinesterase level (U)</td>
<td>31</td>
<td>-</td>
<td>29</td>
<td>33</td>
<td>56</td>
</tr>
</tbody>
</table>

4.10 P.M. 8.30 P.M.

no serum levels of amylase or lipase were done.

Arterial blood gases

<table>
<thead>
<tr>
<th>pH</th>
<th>pO2 (mmHg)</th>
<th>pCO2 (mmHg)</th>
<th>HCO3 (mmol/L)</th>
<th>CO2 cont (mmol/L)</th>
<th>BE (mmol/L)</th>
<th>O2 sat (%)</th>
<th>OCT (vol %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2 1.00 am. 7.475</td>
<td>155.2</td>
<td>32.5</td>
<td>15.4</td>
<td>19.4</td>
<td>-5</td>
<td>55</td>
<td>21.1</td>
</tr>
<tr>
<td>11.21 am. 7.393</td>
<td>140</td>
<td>33.7</td>
<td>19.9</td>
<td>20.9</td>
<td>35</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>
Management in the hospital

The patient was put on Bird’s respirator after she began apnea. 2 PAM and atropine as well as Dopamine were also given intravenously. The condition of the patient still deteriorated and she expired after she was in the hospital for 6 days.

Since the patient was dead by violence (suicide or may be accidence) the autopsy must be done. (by Law)

Autopsy findings (performed after death 24 hours)

External examination

A 65 year old Chinese deceased, her height was 160 centimeters, her weight was 50 kilograms. There was a second degree scalds on the buttocks and tracheotomy on the neck was seen.

Internal examination

Brain weighed 1,330 gm. There were spotty subarachnoid hemeorrhages at the cerebellar region as well as in the pons. The herniations of cerebellar tonsils were also present.

Lungs together weighed 970 grams. There were severe degree of congestions and edema. (Fig. 1)

Abdominal cavity : There was necrosis of mesenteric pad of fat as well as calcium soaps around the pancreatic areas. The pancreas was inflamed; extensive necrotic and frank hemorrhagic areas were present. Also there was about 200 cc. of sero sanquinous fluid in the peritoneum (Fig. 2, 3)

Figure 1. Lung shows areas of congestion and edema (H&E × 400)

Figure 2. Shows gross appearance of the pancreas and tissue around, arrow points at necrotic tissue (N) and hemorrhagic area (H) (extensive)
The stomach was dilated and contained coffee-ground color fluid, smelt as insecticide. Similar fluid was found all along the rest of the intestinal tract.

The liver weighed 1480 grams. There was fatty metamorphosis of the liver parenchyma; this was generalized and of moderately severe degree.

Dichlovos (organophosphate) and propoxur (carbamate) were present in the stomach content, kidney and bile on analysis at necropsy.

Blood culture yielded no organism.

Discussion

Insecticide poisoning, due to ingestion (attempted suicide, homicide, or accident) is either by organophosphate compound or carbamate group. The victim or the patient might show the signs of muscarinic effects, such as profuse sweating, miosis, salivation, respiratory wheezing, stomachache, vomiting and watery diarrhea, bradycardia, blur vision, involuntary urination\(^{(1-13)}\) etc.

However the nicotinic effects also show, such as fasciculation or cramps then weakness, twitching, finaly paralysis of the muscle and respiratory embarrassment, cyanosis and cardiac arrest. This particular case report developed some muscarinic effects such as excessive salivation, miosis, diarrhea and follow by bradycardia, apnea and coma and finally death.

This patient’s stomach content smelt of the insecticide following the gastric lavage and also following the necropsy.

Serum cholinesterase level was very low by the
first day (31U.) and still low by the 6th hospital day when she died (57U.). (Normal level is 85-135U.). The level of Cholinesterase is used as an indication for the diagnosis and the prognosis of the patient but not for the treatment. (In case the level of serum cholinesterase return to normal the patient might have good prognosis).

Another laboratory finding is hyperglycemia, glycosuria and ketonuria had been reported by Samantray and Permutt; (14-15) and they also claimed that anticholinergic agents are effective in the treatment. In this case report, she had hyperglycemia (495-191 mg%) all the time of her hospitalization. They also suggested that it is the direct effect of cholinergic blockade to plasma glucose and insulin response in the normal healthy person.

At the antient time, no body has thought about acute pancreatitis as a complication of the organophosphate insecticide poisoning. The findings of increasing levels of amylase and lipase together with the symptom of muscular cramps were noticed. These findings disappeared after the patient received specific and symptomatic treatment for organophosphate insecticide poisoning.

Until the year 1977 Dressel et al (16) had reported a first case of acute pancreatitis as a complication of organophosphate insecticide poisoning. Since then a few more cases have been reported by Dagli and the other authors (17-19)

Later Dressel and other authors (20-24) experimented on the effects of atropine on acinar duct together with organophosphate (diazinon) insecticide both of which produced acute pancreatitis in canines. They found pathology of acinar cells of pancreas by light and electron microscope which they can conclude that the pathology occurred directly by cholinergic effect and not by ductal hypertension.

Finally Dressel and another authors (16,22-26) stated that the cause of acute pancreatitis are many, and not all are well understood, alcoholism, cholelithiasis, hyperparathyroidism, hyperlipidemia, direct trauma, tumors and a growing list of drugs can cause pancreatitis as well as the cholinesterase inhibitors. Even the poison from scorpion can cause acute pancreatitis in man too, (27-28) But at least no report about carbamate are associated with acute pancreatitis.

This case report is the first case of acute hemorrhagic Pancreatitis in Thailand (computer searched Medline) and might be the first case in the world which confirmed the diagnosis by autopsy findings. (computer searched Medline)

Acknowledgements

I wish to thank the ward physicians and the technican (Sirinan) who analyzed the drugs post-mortem.

References

